Answer:
0.17547 m
Explanation:
m = Mass of block = 
v = Velocity of block = 10.8 m/s
k = Spring constant = 125 N/m
A = Amplitude
The kinetic energy of the system is conserved

The amplitude of the resulting simple harmonic motion is 0.17547 m
The rate constant of a reaction can be computed by the ratio of the changes in the concentration and time take taken for it to decompose. Thus, if the rate constant is given to be 14 M/s, we have

where C are the concentration values and t is the time taken for it to decompose.


Thus, it will take 0.003 s for it to decompose.
Answer: 0.003 s
Answer:
7.1 Hz
Explanation:
In a generator, the maximum induced emf is given by

where
N is the number of turns in the coil
A is the area of the coil
B is the magnetic field strength
f is the frequency
In this problem, we have
N = 200


B = 0.030 T
So we can re-arrange the equation to find the frequency of the generator:

Answer:
F = ⅔ F₀
Explanation:
For this exercise we use Coulomb's law
F = k q₁q₂ / r²
let's use the subscript "o" for the initial conditions
F₀ = k q² / r²
now the charge changes q₁ = q₂ = 2q and the new distance is r = 3 r
we substitute
F = k 4q² / 9 r²
F = k q² r² 4/9
F = ⅔ F₀