1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
VikaD [51]
3 years ago
7

Please help! Will mark Brainly!

Mathematics
1 answer:
Ulleksa [173]3 years ago
4 0

10 hot dogs and 5 hamburgers   your graph would be 2y:1x

\frac{2y}{1x}

You might be interested in
What is the vertex of the function f (x) = x2 - 10x?<br>(5,-25)<br>(5.-75)<br>(-5,75)<br>(-5,25)​
JulsSmile [24]

Option A

The vertex is (h, k) = (5, -25)

<em><u>Solution:</u></em>

<em><u>Given function is:</u></em>

f(x) = x^2-10x

<em><u>The vertex form is given as:</u></em>

y = a(x-h)^2+k

<h3>where (h, k) is the vertex</h3>

Rewrite the equation in vertex form

f(x) = x^2-10x

Complete the square for  x^2-10x

Use the form ax^2+bx+c to find the values of  a, b, c

a = 1 , b = -10, c = 0

Consider the vertex form of a parabola

a(x+d)^2+e

Substitute the values of a and b into the following formula to find "d" :

d = \frac{b}{2a}\\\\d = \frac{-10}{2 \times 1}\\\\d = -5

Find the value of "e" using the formula,

e = c - \frac{b^2}{4a}\\\\e = 0 - \frac{(-10)^2}{4 \times 1}\\\\e = -25

Substitute the value of a, d, e into vertex form

a(x+d)^2+e\\\\1(x-5)^2-25\\\\(x-5)^2-25

Set y equal to above equation

y = (x-5)^2-25

Compare the above equation with vertex form

y = a(x-h)^2+k

y = (x-5)^2-25

We find, h = 5 and k = -25

Thus the vertex is (h, k) = (5, -25)

7 0
3 years ago
A robot can complete 8 tasks in 5/6 or an hour.each tasks takes the same amount .how long does it take the robot to complete one
lyudmila [28]
So one hour is 60 minutes,
5/6 of an hour would be, 50 minutes. Basically 60/6=10 and 10*5=50
so if the robot does 8 tasks in 50 minutes and each tasks takes the same amount, the equation would be 50/8
50/8= 6.25
Each task is 6 minutes and 25 seconds.
8 0
3 years ago
What is the solution to this inequality?
Mumz [18]

Answer:

x> 1

Step-by-step explanation:

X-7>-6

Add 7 to each side

X-7+7>-6+7

x> 1

3 0
3 years ago
Drag the tiles to the correct boxes to complete the pairs. Match each ratio with its simplest form. 3:1 2:3 1:3 3:4 6:7 9:7 21:2
Sauron [17]

Answer:

Reduce them

  1. 3:4
  2. 3:1
  3. 2:3
  4. 1:3
  5. 9:7
  6. 6:7
8 0
3 years ago
Pleeease open the image and hellllp me
Verdich [7]

1. Rewrite the expression in terms of logarithms:

y=x^x=e^{\ln x^x}=e^{x\ln x}

Then differentiate with the chain rule (I'll use prime notation to save space; that is, the derivative of <em>y</em> is denoted <em>y' </em>)

y'=e^{x\ln x}(x\ln x)'=x^x(x\ln x)'

y'=x^x(x'\ln x+x(\ln x)')

y'=x^x\left(\ln x+\dfrac xx\right)

y'=x^x(\ln x+1)

2. Chain rule:

y=\ln(\csc(3x))

y'=\dfrac1{\csc(3x)}(\csc(3x))'

y'=\sin(3x)\left(-\cot^2(3x)(3x)'\right)

y'=-3\sin(3x)\cot^2(3x)

Since \cot x=\frac{\cos x}{\sin x}, we can cancel one factor of sine:

y'=-3\dfrac{\cos^2(3x)}{\sin(3x)}=-3\cos(3x)\cot(3x)

3. Chain rule:

y=e^{e^{\sin x}}

y'=e^{e^{\sin x}}\left(e^{\sin x}\right)'

y'=e^{e^{\sin x}}e^{\sin x}(\sin x)'

y'=e^{e^{\sin x}+\sin x}\cos x

4. If you're like me and don't remember the rule for differentiating logarithms of bases not equal to <em>e</em>, you can use the change-of-base formula first:

\log_2x=\dfrac{\ln x}{\ln2}

Then

(\log_2x)'=\left(\dfrac{\ln x}{\ln 2}\right)'=\dfrac1{\ln 2}

So we have

y=\cos^2(\log_2x)

y'=2\cos(\log_2x)\left(\cos(\log_2x)\right)'

y'=2\cos(\log_2x)(-\sin(\log_2x))(\log_2x)'

y'=-\dfrac2{\ln2}\cos(\log_2x)\sin(\log_2x)

and we can use the double angle identity and logarithm properties to condense this result:

y'=-\dfrac1{\ln2}\sin(2\log_2x)=-\dfrac1{\ln2}\sin(\log_2x^2)

5. Differentiate both sides:

\left(x^2-y^2+\sin x\,e^y+\ln y\,x\right)'=0'

2x-2yy'+\cos x\,e^y+\sin x\,e^yy'+\dfrac{xy'}y+\ln y=0

-\left(2y-\sin x\,e^y-\dfrac xy\right)y'=-\left(2x+\cos x\,e^y+\ln y\right)

y'=\dfrac{2x+\cos x\,e^y\ln y}{2y-\sin x\,e^y-\frac xy}

y'=\dfrac{2xy+\cos x\,ye^y\ln y}{2y^2-\sin x\,ye^y-x}

6. Same as with (5):

\left(\sin(x^2+\tan y)+e^{x^3\sec y}+2x-y+2\right)'=0'

\cos(x^2+\tan y)(x^2+\tan y)'+e^{x^3\sec y}(x^3\sec y)'+2-y'=0

\cos(x^2+\tan y)(2x+\sec^2y y')+e^{x^3\sec y}(3x^2\sec y+x^3\sec y\tan y\,y')+2-y'=0

\cos(x^2+\tan y)(2x+\sec^2y y')+e^{x^3\sec y}(3x^2\sec y+x^3\sec y\tan y\,y')+2-y'=0

\left(\cos(x^2+\tan y)\sec^2y+x^3\sec y\tan y\,e^{x^3\sec y}-1\right)y'=-\left(2x\cos(x^2+\tan y)+3x^2\sec y\,e^{x^3\sec y}+2\right)

y'=-\dfrac{2x\cos(x^2+\tan y)+3x^2\sec y\,e^{x^3\sec y}+2}{\cos(x^2+\tan y)\sec^2y+x^3\sec y\tan y\,e^{x^3\sec y}-1}

7. Looks like

y=x^2-e^{2x}

Compute the second derivative:

y'=2x-2e^{2x}

y''=2-4e^{2x}

Set this equal to 0 and solve for <em>x</em> :

2-4e^{2x}=0

4e^{2x}=2

e^{2x}=\dfrac12

2x=\ln\dfrac12=-\ln2

x=-\dfrac{\ln2}2

7 0
3 years ago
Other questions:
  • Prove the given trigonometric equation.
    5·1 answer
  • Round 529 to 2 significant figures
    5·2 answers
  • A random sample of 49 statistics examinations was taken. the average score, in the sample, was 84 with a variance of 12.25. the
    9·1 answer
  • What is the value of x?<br><br> • 7<br> • 7√2<br> • 14<br> • 14√2
    15·1 answer
  • Diameter = 3 feet circumference =?
    9·2 answers
  • Answer the two please 1. A monopoly playing board is in the shape of a square.The sides measure 19 inches. What is the area of t
    7·1 answer
  • Which slope intercept form equation is equivalent to the standard form equation -x + 2y = -8?
    14·1 answer
  • Factorizing as the Difference of Two Squares<br>1. 144x2 - 49​
    11·1 answer
  • Pls help on 1 and 2. I have no idea what I'm supposed to do.
    15·2 answers
  • Hello please tell if my answer is right <br> no lies
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!