Answer:
Wavelength of the photon depends on transition from different states.
Explanation:
The wavelength of the photon that is emitted from the atom during the transition depends on the transition from different states. If the photon is emitted from n=4 state to n=3 state, the wavelength of photon is 1875 while on the other hand, if the photon is emitted from n=5 state to n=3 state, the wavelength of photon is 1282. If the photon is emitted from n=3 state to n=2 state, the wavelength of photon is 656.
Answer:
0.324 g is required to make 5.00 M solution of NaCl in 0.800 L.
Given data:
Molarity = 5.00 M
Formula Mass = 58.5 g/mol
Required volume = 0.800 L
To Find;
Mass in gram = ?
Solution:
Formula for calculating mass in gram is given as,
Mass in gram = Molarity × Formula mass × Volume required / 1000 putting values
Mass in gram = 5.00 M × 58.5 g/mol × 0.800 L / 1000
Mass in gram = 0.234 g
If an electron moves up from the first orbit to the higher energy levels, energy will be absorbed by the electron itself and no emission line produced.
But if it moves from the orbits 6,5,4 and 3 to orbit 2, energy will be released by the electron and different emission lines wll be produced.
The information given in the question is not enough to determine the acidity of the solution. This is because, acidity can only be found with the equation: pH = -log [H+].
In order to determine the acidity of the solution, the half titration point value is needed, this will make it possible to determine the value of H30+. If the half point titration value is known, then Ka will be equivalent to pH and the value will be evaluated using the equation: - log (1.6 * 10^-10).
Work is defined energy transferred from one to another.
The formula for work done is work done = force x distance
So in our problem, force is equal to 80 kg/ m / s^2 and distance is equal to 1.25 meters. So plugging in our values will give us:
work done = 80 kg/ m/ s^2 * 1.25 m
= 100.00 J is the answer.