<h2>Answer:</h2>
<u>Yes the statement is</u><u> True</u>
<h2>Explanation:</h2>
THC is a chemical which stands for delta-9-tetrahydrocannibinol or Δ-9-tetrahydrocannabinol (Δ-9-THC). This chemical is a cannabinoid molecule in marijuana or cannabis that has long been known as the main psychoactive ingredient in marijuana which means that it is the substance that causes users to experience the marijuana high. It can be detected in the blood up to 20 hours after ingestion, and it's stored in the body fat and organs for three to four weeks after ingestion.
150/30 = 5
HF1 20/2 = 10
HF2 10/2 = 5
HF3 5/2 = 2.5
HF4 2.5/2 = 1.25
HF5 1.25/2 = 0.625
Answer: 0.63g
Because of the crystal structure of the ice, ice has lower density than liquid water. So the volume of the ice of same mass is greater than water. When melting, the volume will decrease.
Continental drift is the movement of Earth’s continents over long periods of time. An evidence for this is that some continents look like puzzle pieces that can fit together, such as South America and Africa. Another evidence is that fossils of the same type have been found in different continents, far apart - suggesting that the two continents once were joined. Another evidence is that identical rocks were found at both sides of the Atlantic Ocean by Alfred Wegener, the main developer of the continents drift theory.
Answer:
1.387 moles
Explanation:
Step 1:
The balanced equation for the reaction. This is illustrated below:
4Fe + 3O2 —> 2Fe2O3
Step 2:
Determination of the number of mole of Fe in 155.321g of Fe. This can be achieved by doing the following:
Mass of Fe = 155.321g
Molar Mass of Fe = 56g/mol
Number of mole of Fe =?
Number of mole = Mass/Molar Mass
Number of mole of Fe = 155.321/56
Number of mole of Fe = 2.774 mol
Step 3:
Determination of the number of mole of rust (Fe2O3) produced. This is illustrated below:
From the balanced equation above,
4 moles of Fe produced 2 moles of Fe2O3.
Therefore, 2.774 moles of Fe will produce = (2.774 x 2)/4 = 1.387 moles of Fe2O3.
Therefore, 1.387 moles of rust (Fe2O3) is produced from the reaction