Answer:
rate= k[A]²[B]²[C]
Explanation:
When concentration of A is increased two times ,keeping other's concentration constant , rate of reaction becomes 4 times .
So rate is proportional to [A]²
When concentration of B is increased two times , keeping other's concentration constant,rate of reaction becomes 4 times.
So rate is proportional to [B]²
When concentration of C is increased two times , keeping other's concentration constant, rate of reaction becomes 2 times.
So rate is proportional to [C]
So rate= k[A]²[B]²[C]
Answer:
d. its effective nuclear charge is lower than the other noble gases.
Explanation:
Xenon belongs to group O on the periodic table. Most of the elements here are unreactive.
Due to the large size of Xenon, the outermost electrons have very low effective nuclear charge. Effective nuclear charge is the effect of the positive charges of the nucleus on the electrons in orbits. This effect decreases outward as atomic shell increases.
Xenon has a very large atomic radius and there is weak a nuclear charge on the outermost electrons. The more electronegative elements would be able to attract some of its outermost electrons easily and form chemical bonds with xenon much more readily.
Answer:
6.05g
Explanation:
The reaction is given as;
Ethane + oxygen --> Carbon dioxide + water
2C2H6 + 7O2 --> 4CO2 + 6H2O
From the reaction above;
2 mol of ethane reacts with 7 mol of oxygen.
To proceed, we have to obtain the limiting reagent,
2,71g of ethane;
Number of moles = Mass / molar mass = 2.71 / 30 = 0.0903 mol
3.8g of oxygen;
Number of moles = Mass / molar mass = 3.8 / 16 = 0.2375 mol
If 0.0903 moles of ethane was used, it would require;
2 = 7
0.0903 = x
x = 0.31605 mol of oxygen needed
This means that oxygen is our limiting reagent.
From the reaction,
7 mol of oxygen yields 4 mol of carbon dioxide
0.2375 yields x?
7 = 4
0.2375 = x
x = 0.1357
Mass = Number of moles * Molar mass = 0.1357 * 44 = 6.05g
This is a black screen. there’s no picture.