The volume of 0. 250 mole sample of
gas occupy if it had a pressure of 1. 70 atm and a temperature of 35 °C is 3.71 L.
Calculation,
According to ideal gas equation which is known as ideal gas law,
PV =n RT
- P is the pressure of the hydrogen gas = 1.7 atm
- Vis the volume of the hydrogen gas = ?
- n is the number of the hydrogen gas = 0.25 mole
- R is the universal gas constant = 0.082 atm L/mole K
- T is the temperature of the sample = 35°C = 35 + 273 = 308 K
By putting all the values of the given data like pressure temperature universal gas constant and number of moles in equation (i) we get ,
1.7 atm×V = 0.25 mole ×0.082 × 208 K
V = 0.25 mole ×0.082atm L /mole K × 308 K /1.7 atm
V = 3.71 L
So, volume of the sample of the hydrogen gas occupy is 3.71 L.
learn more about ideal gas equation
brainly.com/question/4147359
#SPJ4
I believe the correct answer from the choices listed above is option B. A chemical formula written above or below the yield sign indicates <span>that the substance is used as a catalyst. I am certain with this answer. Hope this helps. Have a nice day.</span>
Lysosome is B. breaks down waste materials
Vacuole is A. temporary storage
Chloroplast is C. converts energy
Answer:
0.823 M was the molarity of the KOH solution.
Explanation:
(Neutralization reaction)
To calculate the concentration of base , we use the equation given by neutralization reaction:

where,
are the n-factor, molarity and volume of acid which is 
are the n-factor, molarity and volume of base which is KOH.
We are given:

Putting values in above equation, we get:


0.823 M was the molarity of the KOH solution.
According to Boyle's law, volume is inversely proportional to pressure. thus P=k/V
Therefore PV=k
P1V1=P2V2
In the question above,
P1=3.67atm
P2=1.94atm
V1=2.22L
V2=?
Thus substituting for the values in the gas equation;
3.67atm*2.22L=1.94atm*V2
V2=3.67atm*2.22L/1.94atm
=4.21L