Explanation:
Physical change -
It refers to any change during any process , where there is no new substance is formed , is referred to as a physical change.
Any change in the state of matter is characterised under physical change.
Chemical change -
It refers to any change in a chemical process , where there is formation of any new substance , is referred to as a chemical change .
From the options given in the question,
1. Apple turning brown , on air exposure , is an example of chemical change .
2. The physical state of mercury is liquid , is an example of physical change .
3. phosphorus burns on exposed to air , is an example of chemical change .
4. The gas Neon is colorless at the room temperature , is is an example of physical change .
Explanation:
- Evaporation is defined as a process in which liquid state of water is changing into vapor state.
So, we need to break the bonds of liquid substance in order to convert it into vapor state. And, energy is absorbed for breaking of bonds which means that evaporation is an endothermic process.
Hence, the statement evaporation of water is an exothermic process is false.
- When a hydrocarbon reacts with oxygen and leads to the formation of carbon dioxide and water then this type of reaction is known as combustion reaction.
A combustion reaction will always release heat energy. Hence, combustion reaction is exothermic in nature.
- When energy is transferred as heat from the surroundings to the system then it means energy is being absorbed by the system. And, absorption of heat is an endothermic process for which
is positive.
- Whereas when energy is transferred from system to the surrounding then it means energy is released by the system which is an exothermic process.
Hence, for an exothermic process value of
is negative.
Thus, we can conclude that statements which are true are as follows.
- A combustion reaction is exothermic.
- When energy is transferred as heat from the system to the surroundings,
is negative.
- For an endothermic reaction Deta H is positive.
Answer:
Explanation:
<em>2. A 10 kg bowling ball would require what force to accelerate down an alleyway at a rate of 3m/s² ?</em>
Notice that I completed the question with the garbled and missing values:
<u>Data:</u>
<u />
<u>Physical principles:</u>
- Newton's second law:

<u>Solution:</u>

<em></em>
<em>3. Salty has a car that accelerates at 5 m/s². If the car has a mass of 1000 kg, how much force does the car produce?</em>
Notice that I arranged the typos.
<u />
<u>Data:</u>
<u>Physical principles:</u>
- Newton's second law:

<u>Solution:</u>

<em>4. What is the mass of a falling rock if it produces a force of 147 N?</em>
<u>Data:</u>
<u>Physical principles:</u>
- neglecting air resistance ⇒ a = g: gravitational acceleration: 9.8m/s²
- Newton's second law:

<u>Solution:</u>
- Clear m from Newton's second law

- Substitute with F = 147 N and a = g = 9.8m/s², and compute

<em></em>
<em>5. What is the mass of a truck if it produces a force of 14,000 N while accelerating at a rate of 5 m/s²?</em>
<u>Data:</u>
<u>Physical principles:</u>
- Second Newton's law:

<u>Solution:</u>
- Clear m from Newton's second law

- Substitute with F = 14,000 N and a = 5m/s², and compute
