The launch velocity of the marble launcher is 34.65 m/s
Given that the launch velocity of marble launcher, launches a 25g marble to a distance of 73 cm (0.73 m) and the marble roll up to 6.2 meters before stopping. The launch height is 20 cm (0.2 m).
The time for landing can be calculated by the second equation of motion formula:
h = ut +
g
Let u = 0
0.2 = 0×t +
× 9.8 × 
= 
= 0.04
t = 0.2s
Now, the launch velocity of the marble launcher can be calculated by:
Speed = Distance / Time
Speed = 
Speed = 
Speed = 34.65 m/s
Therefore, the launch velocity of the marble launcher is 34.65 m/s
Know more about Launch velocity: -brainly.com/question/18883779
#SPJ9
Answer:

Explanation:
We need to apply conservation of momentum and energy to solve this problem.
<u>Conservation of momentum</u>

(1)
- m(c) is the mass of stick clay
- m(w) is the mass of the wooden block
- v(ic) is the initial velocity of clay
- V is the final velocity of the system clay plus wood.
<u>Conservation of total energy</u>
The change in kinetic energy is equal to the change in internal energy, in our case it would be the energy loss due to the friction force. Let's recall the definition of work, it is the dot product between force and displacement, Therefore:



We can find V from this equation:

Now, let's put V into the equation (1) and find v(ic)

I hope it helps you!
<u />
Here, the diagram shows Kepler's first law of Planetary motion, which tells, "<span>A line segment joining a planet and the Sun sweeps out equal areas during equal intervals of time".
In short, Your Answer would be Option D
Hope this helps!</span>
0.5mv^2
0.5 times 40 times 3^2
The kinetic energy is 180
C. Electrical current increases as resistance decreases