Yes, of course, a good example would be us.
<span>(a) -9.97 m/s
(b) x = 2.83
This is a simple problem in integral calculus. You've been given part of the 2nd derivative (acceleration), but not quite. You've been given the force instead. So let's setup a function for acceleration.
f''(x) = -8x N / 3.1 kg= -8x kg*m/s^2 / 3.1 kg = -2.580645161x m/s^2
So the acceleration of the body is now expressed as
f''(x) = -2.580645161x m/s^2
Let's calculate the anti-derivative from that.
f''(x) = -2.580645161x m/s^2
f'(x) = -1.290322581x^2 + C m/s
Now let's use the known velocity value at x = 2.0 to calculate C
f'(x) = -1.290322581x^2 + C
1
1 = -1.290322581*2^2 + C
11 = -1.290322581*4 + C
11 = -5.161290323 + C
16.161290323 = C
So the velocity function is
f'(x) = -1.290322581x^2 + 16.161290323
(a) The velocity at x = 4.5
f'(x) = -1.290322581x^2 + 16.161290323
f'(4.5) = -1.290322581*4.5^2 + 16.161290323
f'(4.5) = -1.290322581*20.25 + 16.161290323
f'(4.5) = -26.12903227 + 16.161290323
f'(4.5) = -9.967741942
So the velocity is -9.97 m/s
(b) we want a velocity of 5.8 m/s
5.8 = -1.290322581x^2 + 16.161290323
0 = -1.290322581x^2 + 10.36129032
1.290322581x^2 = 10.36129032
x^2 = 8.029999998
x = 2.833725463</span>
Complete Question:
A 59.1 g sample of iron is put into a calorimeter (see sketch attached) that contains 100.0 g of water. The iron sample starts off at 85.0 °C and the temperature of the water starts off at 23.0 °C. When the temperature of the water stops changing it's 27.6 °C. The pressure remains constant at 1 atm.
Calculate the specific heat capacity of iron according to this experiment. Be sure your answer is rounded to the correct number of significant digits
(Question attached)
Answer:

(rounded to 1 decimal place)
Explanation:
A calorimeter is used to measure the heat of chemical or physical reactions. The example given in the question is using the calorimeter to determine the specific heat capacity of iron.
When the system reaches equilibrium the iron and water will be the same temperature,
. The energy lost from the iron will be equal to the energy gained by the water. It is assumed that the only heat exchange is between the iron and water and no exchange with the surroundings.
(Eq 1)
(Eq 2)
Water:

Iron:

Substituting Eq 1 into Eq 2 and details extracted from the question:




At standard atmospheric pressure, 100° C
is defined as the boiling point of water.