<span>The Dynamo Theory
Let Me Know If You Need Anymore Help
~Witt</span>
Answer:
B. d(low)=4d(high)
Explanation:
Frequency of a string can be written as;
f = v/2L
Where;
v = sound velocity
L = string length
Frequency can be further expanded to;
f = v/2L = (1/2L)√(T/u) ......1
Where;
m= mass,
u = linear density of string,
T = tension
p = density of string material
A = cross sectional area of string
d = string diameter
u = m/L .......2
m = pAL = p(πd^2)L/4 (since Area = (πd^2)/4)
f = (1/2L)√(T/u) = (1/2L)√(T/(m/L))
f = (1/2L)√(T/((p(πd^2)L/4)/L))
f = (1/2L)√(4T/pπd^2)
f = (1/L)(1/d)√(4T/pπ)
Since the length of the strings are the same, the frequency is inversely proportional to the string diameter.
f ~ 1/d
So, if
4f(low) = f(high)
Then,
d(low) = 4d(high)
0.304 cm I think - let me check
The answer is "matter is made up of tiny particles called atoms"
Answer:
In a series circuit, how does the voltage supplied by the battery compare to the voltage on each load? The voltage of the battery is equal to the voltage of each load added together. ... The voltage across the two resistors must both have the same voltage of the battery.
Explanation:
<em>mark me</em><em> </em><em>as BRAINLIEST</em><em> </em>
<em>follow me</em><em> </em>
<em>carry on</em><em> </em><em>learning</em><em> </em>