You will use the height of the bridge from the ground.
Solution:
Formula to be used is y=Viy(t)+g(t^2)/2
Where:
Vi=initial velocity which is 0 m/s
y=10 m
Gravitational acceleration or g =9.8m/s^2
T= time you need
Substitute all the given to the formula
10m=(0m/s)(t)+(9.8m/s^2)(t^2)/2
10mx2=9.8m/s^2(t^2)
Now isolate the variable you want to find which is T or time
10mx2/9.8m/s^2=t^2
20m/9.8m/s^2=t^2
Square root of 2.04= square root of t^2
T=1.43 secs
The answer is 1.43 seconds
Buoyancy is a force that always acts in an upward direction exerted by a fluid on a body placed in the fluid
Hope this helps :)
Answer: 3.75 m
Explanation:
5 squirts in 1 second
So, 1 squirt in 1/5 second which is 0.2 second.
The difference in timing of two consecutive squirt is 0.2 second, so
time (t) = 0.2 s.
speed (s) = 15 m/s
Distance of separation (d) = ?
Now, formula for distance is
d = s × t
d = 15 × 0.2
d = 3.75 m
-- If velocity is constant, then there is no net force
on the chair.
-- If there is no net force on the chair, then friction
must exactly balance out your push.
-- The force of friction is exactly equal in magnitude
to your push, and in exactly the opposite direction.
The way I actually did that it was just like a little bit of a panic attack and I was like literally dying laughing at my chrome book mark and I was like literally dying laughing at the park I was laughing so loud and I’m literally gonna laughing so I can’t do tell him what he says I don’t think I