Answer:
Neon
Explanation:
Step 1: Given and required data
- Density of the gas (ρ): 1.57 g/L
- Ideal gas constant (R): 0.08206 atm.L/mol.K
Step 2: Convert T to Kelvin
We will use the following expression.
K = °C + 273.15 = 40.0 + 273.15 = 313.2 K
Step 3: Calculate the molar mass of the gas (M)
For an ideal gas, we will use the following expression.
ρ = P × M/R × T
M = ρ × R × T/P
M = 1.57 g/L × 0.08206 atm.L/mol.K × 313.2 K/2.00 atm
M = 20.17 g/mol
The gas with a molar mass of 20.17 g/mol is Neon.
it will be hard, but you can do it. Just study given the materials for the course. Understand enthalpy and entropy, and various types of bonding and you'll be fine.
Answer:
398 mL
Explanation:
Using the equation for molarity,
C₁V₁ = C₂V₂ where C₁ = concentration before adding water = 8.61 mol/L and V₁ = volume before adding water, C₂ = concentration after adding water = 1.75 mol/L and V₂ = volume after adding water = 500 mL = 0.5 L
V₂ = V₁ + V' where V' = volume of water added.
So, From C₁V₁ = C₂V₂
V₁ = C₂V₂/C₁
= 1.75 mol/L × 0.5 L ÷ 8.61 mol/L
= 0.875 mol/8.61 mol/L
= 0.102 L
So, V₂ = V₁ + V'
0.5 L = 0.102 L + V'
V' = 0.5 L - 0.102 L
= 0.398 L
= 398 mL
So, we need to add 398 mL of water to the nitric solution.
A sample of an ideal gas has a volume of 2.30 L at 281 K and 1.02 atm. 1.76 atm is the pressure when the volume is 1.41 L and the temperature is 298 K.
<h3>What is Combined Gas Law ?</h3>
This law combined the three gas laws that is (i) Charle's Law (ii) Gay-Lussac's Law and (iii) Boyle's law.
It is expressed as

where,
P₁ = first pressure
P₂ = second pressure
V₁ = first volume
V₂ = second volume
T₁ = first temperature
T₂ = second temperature
Now put the values in above expression we get



P₂ = 1.76 atm
Thus from the above conclusion we can say that A sample of an ideal gas has a volume of 2.30 L at 281 K and 1.02 atm. 1.76 atm is the pressure when the volume is 1.41 L and the temperature is 298 K.
Learn more about the Combined gas Law here: brainly.com/question/13538773
#SPJ4