1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
telo118 [61]
3 years ago
14

The concentration of chlorobenzene (C&HsCl) in water is 100 mol/m3. density is 1.00 g/cm3 The solution (a) What is the weigh

t fraction of chlorobenzene? (b) What is the chlorobenzene concentration in PPM? (c) What is the mole fraction of chlorobenzene? (d) What is the molarity of chlorobenzene? (e) What is the molality of chlorobenzene? The concentration of chlorobenzene (C&HsCl) in air is 0.100 mol/m3 at 25 °C and 1 atm. The molecular weight of air may be taken to be 28.84 gmol. (a) What is the weight fraction of chlorobenzene? (c) What is the mole fraction of chlorobenzene? (b) What is the chlorobenzene concentration in PPM?
Chemistry
1 answer:
muminat3 years ago
8 0

Answer:

Part 1

(a) 0.0113

(b) 11300 ppm

(c) 1.82 *10⁻³

(d) 0.100 M

(e) 0.101 m

Part 2

(a) 9.45 *10⁻³

(b) mole fraction = 2.45 *10⁻³

(c) 11.3 ppm

Explanation:

Chlorobenzene formula is C₆H₅Cl

Part 1: We are given a concentration of chlorobenzene in water of 100 mol/m³, and a density of the solution of 1.00 g/cm³.

(a) weight fraction C₆H₅Cl = mass C₆H₅Cl / mass solution

We know there are 100 moles of C₆H₅Cl per m³ of solution.

To get the mass of C₆H₅Cl we'll convert the moles to mass by using the molar mass:

Molar mass C₆H₅Cl = 6*12.011 + 5*1.00794 + 35.4527 = 112.558 g/mol

mass C₆H₅Cl = moles C₆H₅Cl * molar mass C₆H₅Cl

mass C₆H₅Cl = 100 moles * 112.558 g/mol = 11255.8 g

11255.8 g of C₆H₅Cl are in 1 m³ of solution.

Next we'll convert 1 m³ of solution to mass by using the density

mass solution = volume solution * density of solution

mass solution = 1m^{3} *\frac{(100cm)^{3} }{ 1m^{3}} * \frac{1.00 g}{cm^{3} } = 1.00 *10^{6} g

weight fraction C₆H₅Cl = 11256 g / 1.00 *10⁶ g = 0.0113

(b) ppm stands for "parts per million" and it is usually expressed as mg per Liter of solution

We already calculated that there are 11256 g or more exactly 11300 g of C₆H₅Cl in 1 m³ of solution, so lets convert to mg/L:

\frac{11300 g}{1 m^{3} } * \frac{1000 mg}{1 g} * \frac{1 m^{3} }{1000 L} = 11300 mg/L

So the solution is 11300 ppm

(c)  mole fraction = moles of C₆H₅Cl / total moles in solution

total moles = moles C₆H₅Cl + moles water

moles water = mass water / molar mass water

mass water = mass solution - mass C₆H₅Cl

moles of C₆H₅Cl = 100 moles

mass water = 1.00 *10⁶ g of solution - 11256 g = 988744 g of water

moles water = 988744 g / 18.0153 g/mol = 54884 moles water

total moles = 100 + 54884 = 54984 moles

mole fraction = 100 moles of C₆H₅Cl / 54984 moles = 1.82 *10⁻³

(d) Molarity = moles C₆H₅Cl / Liters of solution

We know the solution is 100 mol / m³ so we just have to convert the m³ to L:

\frac{100 mol}{m^{3} } * \frac{1 m^{3}}{1000 L} = 0.100 mol / L = 0.100 M

(e) Molality = moles C₆H₅Cl / kg water

We know that there are 100 moles per 988744 g of water, so we need to convert the grams of water to kilograms.

Molality = \frac{100 moles}{988744 g} *\frac{1000 g}{1 kg} = 0.101 m

____________________________________

Part 2: Concentration of C₆H₅Cl in air is 0.100 mol/m³, at 25 °C and 1 atm.

Molar mass air = 28.84 g/mol

(a) weight fraction C₆H₅Cl = mass C₆H₅Cl / total mass

mass C₆H₅Cl = 0.100 mol * 112.558 g/mol = 11.26 g

total mass = mass C₆H₅Cl + mass air

mass air = moles air * molar mass air

moles air = total moles - moles C₆H₅Cl

We can calculate the total moles by using the ideal gas law:

P V = n R T

where P is pressure in atm, V is volume in L, n is the number of moles, R is the gas constant and T is temperature in Kelvin.

n = P V / R T

P = 1 atm

V = 1 m³ = 1000 L

R = 0.08206 L atm K⁻¹ mol⁻¹

T = 25 + 273.15 = 298 K

n = (1 atm * 1000 L) / (0.08206 L atm K⁻¹ mol⁻¹ * 298 K) = 40.89 moles

moles air = 40.89 - 0.100 = 40.79 moles air

mass air = 40.79 mol * 28.84 g/mol = 1176.4 g

total mass = 1176.4 g + 11.26 g = 1188 g

weight fraction = 11.26 g / 1188 g = 9.45 *10⁻³

(b) mole fraction = moles C₆H₅Cl / total moles

mole fraction = 0.100 / 40.89 = 2.45 *10⁻³

(c) ppm = mg C₆H₅Cl / Liters

We already know there are 11.26 g C₆H₅Cl in 1 m³, which is the same as 1000 L, so:

\frac{11.26 g}{1000 L} *\frac{1000 mg}{1 g} = 11.3 mg/L

The concentration is 11.3 ppm

You might be interested in
Which of these is part of the geosphere?
frez [133]
The answer is B its anothey fancy word for lithospher
3 0
3 years ago
Read 2 more answers
How many protons dose p have
Softa [21]

Answer:

i have to see the question

Explanation:

5 0
3 years ago
Read 2 more answers
A student wants to prepare 1.00 L of a 1.00 M solution of NaOH (molar mass 40.00 g/mol). If solid NaOH is available, how would t
Serga [27]

Explanation:

1)

Molarity=\frac{\text{Mass of substance}}{\text{Molar mass of substance}\times \text{Volume of solution(L)}}

Mass of NaOH = m

MOlar mass of NaOH = 40 g/mol

Volume of NaOH solution = 1.00 L

Molarity of the solution= 1.00 M

1.00 M=\frac{m}{40 g/mol\times 1.00 L}

m=1.00 M\times 40 g/mol\times 1.00 L = 40. g

A student can prepare the solution by dissolving the 40. grams of NaOH in is small volume of water and making that whole volume of solution to volume of 1 L.

Upto two significant figures mass should be determined.

2)

M_1V_1=M_2V_2 (dilution equation)

Molarity of the NaOH solution = M_1=2.00 M

Volume of the solution = V_1=?

Molarity of the NaOH solution after dilution = M_2=1.00 M

Volume of NaOH solution after dilution= V_2=1 L

M_1V_1=M_2V_2

V_1=\frac{1.00 M\times 1.00 L}{2.00 M}=0.500 L

A student can prepare NaOH solution of 1.00 M by diluting the 0.500 L of 2.00 M solution of NaOH with water to 1.00 L volume.

Upto three significant figures volume should be determined.

8 0
3 years ago
According to collision theory, the rate of reaction depends on atoms colliding in the correct _________ with enough ________ for
kenny6666 [7]

Answer: orientation , energy , frequency

Explanation:

According to the collision theory , the number of collisions that take place per unit volume of the reaction mixture is called collision frequency. The effective collisions are ones which result into the formation of products.

Effective collisions depends on the following  two factors:-

1. Orientation factor: The colliding molecules must have proper orientation at the time of collision to result into formation of products.

2. Energy factor:  For collision to be effective,  the colliding molecules must have energy more than a particular value called as threshold energy.

4 0
4 years ago
How many kilobytes is 36 nibbles?
Deffense [45]

Answer:

<h2>                  †•°⁜Hewo there!⁜°•†</h2>

____________________________________________________________

<h3>                                         ¤0.018¤</h3>

____________________________________________________________

                               †•°-Love Ash or Ashlynn-°•†

                                  P.S (Have A great day!!)  

7 0
3 years ago
Other questions:
  • Why do the vinegar and oil in a salad dressing separate into layers if left standing for too long?
    10·1 answer
  • Does anyone know how to do this?
    12·1 answer
  • What labels in the areas marked Y and Z
    12·1 answer
  • What is the molarity of a 2.0 L sodium hydroxide solution containing 10.0 grams of solute?
    8·1 answer
  • A reaction at evolves of dinitrogen monoxide gas. Calculate the volume of dinitrogen monoxide gas that is collected. You can ass
    12·1 answer
  • Can someone help me please. This is the last day
    10·2 answers
  • Hey can someone at least answer one of these please.
    6·1 answer
  • This graph compares the amounts of three different substances that can dissolve in 100 g of water at temperatures between 0° C a
    14·2 answers
  • Explain how force can be manipulated so objects with
    7·1 answer
  • Why do elements in the same group on the periodic table tend to have similar physical and chemical properties?.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!