1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
telo118 [61]
3 years ago
14

The concentration of chlorobenzene (C&HsCl) in water is 100 mol/m3. density is 1.00 g/cm3 The solution (a) What is the weigh

t fraction of chlorobenzene? (b) What is the chlorobenzene concentration in PPM? (c) What is the mole fraction of chlorobenzene? (d) What is the molarity of chlorobenzene? (e) What is the molality of chlorobenzene? The concentration of chlorobenzene (C&HsCl) in air is 0.100 mol/m3 at 25 °C and 1 atm. The molecular weight of air may be taken to be 28.84 gmol. (a) What is the weight fraction of chlorobenzene? (c) What is the mole fraction of chlorobenzene? (b) What is the chlorobenzene concentration in PPM?
Chemistry
1 answer:
muminat3 years ago
8 0

Answer:

Part 1

(a) 0.0113

(b) 11300 ppm

(c) 1.82 *10⁻³

(d) 0.100 M

(e) 0.101 m

Part 2

(a) 9.45 *10⁻³

(b) mole fraction = 2.45 *10⁻³

(c) 11.3 ppm

Explanation:

Chlorobenzene formula is C₆H₅Cl

Part 1: We are given a concentration of chlorobenzene in water of 100 mol/m³, and a density of the solution of 1.00 g/cm³.

(a) weight fraction C₆H₅Cl = mass C₆H₅Cl / mass solution

We know there are 100 moles of C₆H₅Cl per m³ of solution.

To get the mass of C₆H₅Cl we'll convert the moles to mass by using the molar mass:

Molar mass C₆H₅Cl = 6*12.011 + 5*1.00794 + 35.4527 = 112.558 g/mol

mass C₆H₅Cl = moles C₆H₅Cl * molar mass C₆H₅Cl

mass C₆H₅Cl = 100 moles * 112.558 g/mol = 11255.8 g

11255.8 g of C₆H₅Cl are in 1 m³ of solution.

Next we'll convert 1 m³ of solution to mass by using the density

mass solution = volume solution * density of solution

mass solution = 1m^{3} *\frac{(100cm)^{3} }{ 1m^{3}} * \frac{1.00 g}{cm^{3} } = 1.00 *10^{6} g

weight fraction C₆H₅Cl = 11256 g / 1.00 *10⁶ g = 0.0113

(b) ppm stands for "parts per million" and it is usually expressed as mg per Liter of solution

We already calculated that there are 11256 g or more exactly 11300 g of C₆H₅Cl in 1 m³ of solution, so lets convert to mg/L:

\frac{11300 g}{1 m^{3} } * \frac{1000 mg}{1 g} * \frac{1 m^{3} }{1000 L} = 11300 mg/L

So the solution is 11300 ppm

(c)  mole fraction = moles of C₆H₅Cl / total moles in solution

total moles = moles C₆H₅Cl + moles water

moles water = mass water / molar mass water

mass water = mass solution - mass C₆H₅Cl

moles of C₆H₅Cl = 100 moles

mass water = 1.00 *10⁶ g of solution - 11256 g = 988744 g of water

moles water = 988744 g / 18.0153 g/mol = 54884 moles water

total moles = 100 + 54884 = 54984 moles

mole fraction = 100 moles of C₆H₅Cl / 54984 moles = 1.82 *10⁻³

(d) Molarity = moles C₆H₅Cl / Liters of solution

We know the solution is 100 mol / m³ so we just have to convert the m³ to L:

\frac{100 mol}{m^{3} } * \frac{1 m^{3}}{1000 L} = 0.100 mol / L = 0.100 M

(e) Molality = moles C₆H₅Cl / kg water

We know that there are 100 moles per 988744 g of water, so we need to convert the grams of water to kilograms.

Molality = \frac{100 moles}{988744 g} *\frac{1000 g}{1 kg} = 0.101 m

____________________________________

Part 2: Concentration of C₆H₅Cl in air is 0.100 mol/m³, at 25 °C and 1 atm.

Molar mass air = 28.84 g/mol

(a) weight fraction C₆H₅Cl = mass C₆H₅Cl / total mass

mass C₆H₅Cl = 0.100 mol * 112.558 g/mol = 11.26 g

total mass = mass C₆H₅Cl + mass air

mass air = moles air * molar mass air

moles air = total moles - moles C₆H₅Cl

We can calculate the total moles by using the ideal gas law:

P V = n R T

where P is pressure in atm, V is volume in L, n is the number of moles, R is the gas constant and T is temperature in Kelvin.

n = P V / R T

P = 1 atm

V = 1 m³ = 1000 L

R = 0.08206 L atm K⁻¹ mol⁻¹

T = 25 + 273.15 = 298 K

n = (1 atm * 1000 L) / (0.08206 L atm K⁻¹ mol⁻¹ * 298 K) = 40.89 moles

moles air = 40.89 - 0.100 = 40.79 moles air

mass air = 40.79 mol * 28.84 g/mol = 1176.4 g

total mass = 1176.4 g + 11.26 g = 1188 g

weight fraction = 11.26 g / 1188 g = 9.45 *10⁻³

(b) mole fraction = moles C₆H₅Cl / total moles

mole fraction = 0.100 / 40.89 = 2.45 *10⁻³

(c) ppm = mg C₆H₅Cl / Liters

We already know there are 11.26 g C₆H₅Cl in 1 m³, which is the same as 1000 L, so:

\frac{11.26 g}{1000 L} *\frac{1000 mg}{1 g} = 11.3 mg/L

The concentration is 11.3 ppm

You might be interested in
Which of the following statements about complete metamorphosis is TRUE?
azamat

ill answer if u answer this FAST

pls and ty brainly.com/question/22200936

7 0
3 years ago
Carbon-14 (14C) dating assumes that the carbon dioxide on the Earth today has the same radioactive content as it did centuries a
Nataly [62]

<u>Answer:</u> The tree was burned 16846.4 years ago to make the ancient charcoal

<u>Explanation:</u>

The equation used to calculate rate constant from given half life for first order kinetics:

t_{1/2}=\frac{0.693}{k}

where,

t_{1/2} = half life of the reaction = 5715 years

Putting values in above equation, we get:

k=\frac{0.693}{5715yrs}=1.21\times 10^{-4}yrs^{-1}

Rate law expression for first order kinetics is given by the equation:

k=\frac{2.303}{t}\log\frac{[A_o]}{[A]}

where,

k = rate constant  = 1.21\times 10^{-4}yr^{-1}

t = time taken for decay process = ? yr

[A_o] = initial amount of the sample = 100 grams

[A] = amount left after decay process =  13 grams

Putting values in above equation, we get:

1.21\times 10^{-4}=\frac{2.303}{t}\log\frac{100}{13}\\\\t=16864.4yrs

Hence, the tree was burned 16846.4 years ago to make the ancient charcoal

8 0
2 years ago
Though alchemists were often superstitious, they left a rich legacy for modern chemists. What was their main contribution?
topjm [15]

though alchemists were often superstitious, they left a rich legacy of modern chemists. what was their main contribution-

Explanation:

they were the first to preform experiments.

5 0
3 years ago
After a day at the beach, bodysurfing and hunting for shark teeth, your parent’s yell that it is time to leave. You grab your sa
Lisa [10]

Answer:

There was a change in temperature on the surface you were walking on. It is possible that "you" were walking on cool, wet sand and when your parents said it was time to leave, you ran barefoot towards the parking lot (away from the sand) and got a burning coal sensation on your feet.

Explanation:

5 0
3 years ago
The matter through which waves travel is called a/an​
sweet [91]

Answer:

A medium.

<h3>Explanation:</h3>

It's the material the wave is travelling through.

5 0
3 years ago
Other questions:
  • Type the appositive phrase in this sentence. "cookies with chocolate chunks," the winning recipe, received $100.
    15·1 answer
  • What trend does the first ionization energy follow going across the periodic table?
    7·2 answers
  • Propose a reason why very few 2+ ions are formed in a mass spectrometer
    8·1 answer
  • Consider the molar solubility of SrCO3 in 0.10 M Sr(NO3)2 versus in pure water. Ksp SrCO3 = 5.4 x 10-10 Which statement is true?
    11·1 answer
  • Which character of Life distinguishes a fire and a flowering plant​
    5·1 answer
  • Question 14(multiple choice worth 2 points) a student had a sample of pure water, and added an unknown substance to it. the stud
    10·1 answer
  • Can someone double check my work? (Ideal Gas Law Equation)
    7·1 answer
  • Comparing it to how you did back in September; how did you do? (full sentence response) *
    7·2 answers
  • At the end we stopped the distillation with some material left in the vial. Why is it considered unsafe to distill until dryness
    8·1 answer
  • Which molecule can't be exist?<br>A)NCl3 B)OF6 C)ONF3 D)PCl3<br>​
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!