The spring constant will be k= 5.5N/m for a 200g air track glider attached to a spring.
<h3>What is spring constant?</h3>
The spring constant, k, is a measure of the stiffness of the spring. It is different for different springs and materials.
Calculation for What is the spring constant
First step is to calculate the time period
T = 12 second/10
T = 1.2 second
Now let calculate the spring constant using this formula

Where,
m=0.2kg
T=1.2second
k represent spring constant=?
Let plug in the formula



k=5.48 N/m
k=5.5 N/m ( Approximately)
Therefore the spring constant will be 5.5 N/m
To know more about spring constant follow
brainly.com/question/1968517
#SPJ4
Answer:
h >5/2r
Explanation:
This problem involves the application of the concepts of force and the work-energy theorem.
The roller coaster undergoes circular motion when going round the loop. For the rider to stay in contact with the cart at all times, the roller coaster must be moving with a minimum velocity v such that at the top the rider is in a uniform circular motion and does not fall out of the cart. The rider moves around the circle with an acceleration a = v²/r. Where r = radius of the circle.
Vertically two forces are acting on the rider, the weight and normal force of the cart on the rider. The normal force and weight are acting downwards at the top. For the rider not to fall out of the cart at the top, the normal force on the rider must be zero. This brings in a design requirement for the roller coaster to move at a minimum speed such that the cart exerts no force on the rider. This speed occurs when the normal force acting on the rider is zero (only the weight of the rider is acting on the rider)
So from newton's second law of motion,
W – N = mv²/r
N = normal force = 0
W = mg
mg = ma = mv²/r
mg = mv²/r
v²= rg
v = √(rg)
The roller coaster starts from height h. Its potential energy changes as it travels on its course. The potential energy decreases from a value mgh at the height h to mg×2r at the top of the loop. No other force is acting on the roller coaster except the force of gravity which is a conservative force so, energy is conserved. Because energy is conserved the total change in the potential energy of the rider must be at least equal to or greater than the kinetic energy of the rider at the top of the loop
So
ΔPE = ΔKE = 1/2mv²
The height at the roller coaster starts is usually higher than the top of the loop by design. So
ΔPE =mgh - mg×2r = mg(h – 2r)
2r is the vertical distance from the base of the loop to the top of the loop, basically the diameter of the loop.
In order for the roller coaster to move smoothly and not come to a halt at the top of the loop, the ΔPE must be greater than the ΔKE at the top.
So ΔPE > ΔKE at the top. The extra energy moves the rider the loop from the top.
ΔPE > ΔKE
mg(h–2r) > 1/2mv²
g(h–2r) > 1/2(√(rg))²
g(h–2r) > 1/2×rg
h–2r > 1/2×r
h > 2r + 1/2r
h > 5/2r
The wall exerts a force of equal magnitude but in the opposite direction. So the force by the wall is 10 N to the right.
That is FALSE. The equation to calculate the charges has a distance component that is in the denominator which means that it is inversely proportional (as the distance os greater the force is smaller)
Biodiversity boosts ecosystem productivity where each species, no matter how small, all have an important role to play.A larger number of plant species means a greater variety of crops. Greater species diversity ensures natural sustainability for all life forms.