<h2>
Spring constant is 14.72 N/m</h2>
Explanation:
We have for a spring
Force = Spring constant x Elongation
F = kx
Here force is weight of mass
F = W = mg = 0.54 x 9.81 = 5.3 N
Elongation, x = 36 cm = 0.36 m
Substituting
F = kx
5.3 = k x 0.36
k = 14.72 N/m
Spring constant is 14.72 N/m
I would say your answer to this question would be D
What causes it to form: <span>Acid rain is caused by a chemical reaction that begins when compounds like sulfur dioxide and nitrogen oxides are released into the air. These substances can rise very high into the atmosphere, where they mix and react with water, oxygen, and other chemicals to form more acidic pollutants, known as acid rain. Human activities, power plants, and exhaust from vehicles all are causes.</span>
Affects on living things-
Acid rain can kill trees
It can affect plant growth patterns
Toxins can kill animals
Nonliving things-
It can decay building materials and paints
it breaks down rocks
Hope this helped! Mark brainliest?
Answer:
This reduces the average force applied during the landing process/ or you can say it reduces the impact your body takes.
Explanation:
Answer:
0.76 s
Explanation:
We are given that
Length of rod,L=20 cm=
1 m=100 cm
Mass of rod,M=190 g=
Mass of ball,m=19 g=
Using 1 kg=1000g
We have to find the period if the rod and clay swing as a pendulum.
Moment of inertia of rod-clay=Moment of inertia of rod+moment of inertia of clay


Substitute the values then we get


Now, the center of mass of the combination of the rod and clay is given by

Substitute
=Distance between pivot and the center of the rod
The distance between rod and clay
Using the formula

m
Time period of the oscillation of the system of the rod and the clay is given by

g=
Using the formula
Time period=
Time-period=0.76 s
Hence, the period =0.76 s