That is tention in the butt hole? /*\
If the light of wavelength 700 nm strikes such a photocathode the maximum kinetic energy, in eV, of the emitted electrons is 0.558 eV.
so - $KE_{max} = hc/lembda} work
threshold when KE = 0
hc/lambda = work = 1240/900=1.38 eV
b) Kemax = hc/lambda - work = 1240/640 -1.38=0.558 eV
What is photocathode?
- A photocathode electrolyte interface can be used in a photoelectrolysis cell as the primary light-harvesting junction (in conjunction with an appropriate electrochemical anode) or as an optically complementary photoactive half-cell in a tandem photoelectrode photoelectrolysis cell (Hamnett, 1982; Kocha et al, 1994).
- In the case of the former, the electrode should ideally harvest photon energy across the majority of the solar spectrum in order to achieve the highest energy conversion efficiency possible.
- In the latter case, however, the photocathode may only be active in a specific band of the solar spectrum in order to generate a cathodic photocurrent sufficient to match the current generated in the photoanodic half-cell.
To learn more about Photocathode from the given link:
brainly.com/question/9861585
#SPJ4
Answer
given,
x = (3.9 cm)sin[(9.3 rad/s)πt]
general equation of displacement
x = A sin ω t
A is amplitude
now on comparing
c) Amplitude =3.9 cm
a) frequency =


f = 4.65 Hz
b) period of motion


T = 0.215 s
d) time when displacement is equal to x= 2.6 cm
x = (3.9 cm)sin[(9.3 rad/s)πt]
2.6 = (3.9 cm)sin[(9.3 rad/s)πt]
sin[(9.3 rad/s)πt] = 0.667
9.3 π t = 0.73
t = 0.025 s
All living things are made up of one or more cells. They are the basic unit of life.
Answer:
1. 77.31 N/m
2. 26.2 m/s
3. increase
Explanation:
1. According to the law of energy conservation, when she jumps from the bridge to the point of maximum stretch, her potential energy would be converted to elastics energy. Her kinetic energy at both of those points are 0 as speed at those points are 0.
Let g = 9.8 m/s2. And the point where the bungee ropes are stretched to maximum be ground 0 for potential energy. We have the following energy conservation equation


where m = 75 kg is the mass of the jumper, h = 72 m is the vertical height from the jumping point to the lowest point, k (N/m) is the spring constant and x = 72 - 35 = 37 m is the length that the cord is stretched


2. At 35 m below the platform, the cord isn't stretched, so there isn't any elastics energy, only potential energy converted to kinetics energy. This time let's use the 35m point as ground 0 for potential energy

where H = 35m this time due to the height difference between the jumping point and the point 35m below the platform


3. If she jumps from her platform with a velocity, then her starting kinetic energy is no longer 0. The energy conservation equation would then be

So the elastics energy would increase, which would lengthen the maximum displacement of the cord