Answer:
Mass = 0.32 g
Explanation:
Given data:
Mass of CH₄ = ?
Volume of CH₄ = 500 mL (500 mL× 1L/1000 mL= 0.5 L)
Temperature = 273 K
Pressure = 1 atm
Solution:
Volume of CH₄:
500 mL (500 mL× 1L/1000 mL= 0.5 L)
The given problem will be solve by using general gas equation,
PV = nRT
P= Pressure
V = volume
n = number of moles
R = general gas constant = 0.0821 atm.L/ mol.K
T = temperature in kelvin
By putting values,
1 atm× 0.5 L = n×0.0821 atm.L/ mol.K × 273 K
0.5 atm.L = n×22.4 atm.L/ mol
n = 0.5 atm.L / 22.4 atm.L/ mol
n = 0.02 mol
Mass in gram:
Mass = number of moles × molar mass
Mass = 0.02 mol × 16 g/mol
Mass = 0.32 g
Answer:
The partial pressure of chlorine gas in the mixture is 1.55 atm.
Explanation:
Partial pressure of oxygen gas = 
Partial pressure of nitrogen gas = 
Partial pressure of chlorine gas = 
Total pressure of the mixture of gases = P = 3.30 atm
Using Dalton's law of partial pressure:



The partial pressure of chlorine gas in the mixture is 1.55 atm.
Divide each wight by the relative atomic mass
C = 216 / 12 = 18
H = 36 / 1 = 36
O = 288/16 = 18
Ratio of C:h:O = 1:2:1
Empirical formula is CH2O Could be formaldehyde HCHO.
Answer:
Continuously recurring, or cycling maybe?
Answer:
0.113 M
Explanation:
The reaction that takes place is:
- NaHCO₃ + HCl →NaCl + CO₂ + H₂O
First we convert 0.3967 g of NaHCO₃ into moles, using its molar mass:
- 0.3967 g ÷ 84 g/mol = 4.72x10⁻³ mol NaHCO₃
As 1 mol of NaHCO₃ reacts with 1 mol of HCl, in 41.77 mL of the HCl solution there were 4.72x10⁻³ moles of HCl.
With the <em>calculated number of moles and the given volume </em>we <u>calculate the concentration of the solution</u>:
- Converting 41.77 mL ⇒ 41.77 mL / 1000 = 0.04177 L
- Concentration = 4.72x10⁻³ mol / 0.04177 L = 0.113 M