Answer:
1) 460.5 N
2) 431.7 N
Explanation:
Draw a free body diagram. There are four forces on the hammer:
Applied force 62.5 N in the +x direction, 30 cm from the ground
Reaction force Rᵧ in the +y direction, at the point of contact
Reaction force Rₓ in the +x direction, at the point of contact
Reaction force F at 31° from the vertical, 4.75 cm to the left of the point of contact
Part One
To find F, sum the moments about the point of contact:
∑τ = Iα
(62.5 N) (30 cm) − (F cos 31°) (4.75 cm) = 0
F = 460.5 N
Part Two
To find Rₓ and Rᵧ, sum the forces in the x and y directions.
∑Fₓ = ma
62.5 N − F sin 31° + Rₓ = 0
Rₓ = 174.7 N
∑Fᵧ = ma
-F cos 31° + Rᵧ = 0
Rᵧ = 394.7 N
The net reaction force at the point of contact is:
R = √(Rₓ² + Rᵧ²)
R = 431.7 N
Explanation:
When there is no change in chemical composition of a substance then it is known as physical change.
When we say that mass is conserved during a physical change then it means that total mass of the substance or object will remain the same from beginning till the end.
For example, a metal box of mass 20 grams is beaten with hammer. Its shape will change which is a physical change and after beaten with the hammer its mass still remains 20 grams.
Answer:
See the answers below.
Explanation:
The total power of the circuit is equal to the sum of the powers of each lamp.
![P=60+100\\P=160 [W]](https://tex.z-dn.net/?f=P%3D60%2B100%5C%5CP%3D160%20%5BW%5D)
Now we have a voltage source equal to 240 [V], so by means of the following equation we can find the current circulating in the circuit.

where:
P = power [W]
V = voltage [V]
I = current [amp]
![I = P/V\\I=160/240\\I=0.67 [amp]](https://tex.z-dn.net/?f=I%20%3D%20P%2FV%5C%5CI%3D160%2F240%5C%5CI%3D0.67%20%5Bamp%5D)
So this is the answer for c) I = 0.67 [amp]
We know that the voltage of each lamp is 240 [V]. Therefore using ohm's law which is equal to the product of resistance by current we can find the voltage of each lamp.
a)

where:
V = voltage [V]
I = current [amp]
R = resistance [ohms]
Therefore we replace this equation in the first to have the current as a function of the resistance and not the voltage.

![60 = (0.67)^{2}*R\\R_{60}=133.66[ohm] \\and\\100=(0.67)^{2} *R\\R_{100}=100/(0.66^{2} )\\R_{100}=225 [ohm]](https://tex.z-dn.net/?f=60%20%3D%20%280.67%29%5E%7B2%7D%2AR%5C%5CR_%7B60%7D%3D133.66%5Bohm%5D%20%5C%5Cand%5C%5C100%3D%280.67%29%5E%7B2%7D%20%2AR%5C%5CR_%7B100%7D%3D100%2F%280.66%5E%7B2%7D%20%29%5C%5CR_%7B100%7D%3D225%20%5Bohm%5D)
b)
The effective resistance of a series circuit is equal to the sum of the resistors connected in series.
![R = 133.66 + 225\\R = 358.67 [ohms]](https://tex.z-dn.net/?f=R%20%3D%20133.66%20%2B%20225%5C%5CR%20%3D%20358.67%20%5Bohms%5D)
It acts in the upward direction.
The main cause of this is Friction. The more oil that is laid down, the less friction there is between the ball and the lane surface. The less friction, the harder it is for the bowler to send the ball in a curved path imparted by the spin that the bowler puts on the ball at the instant of release.