Answer:
7. I and III only.
Explanation:
Only portions of the electromagnetic spectrum is visible to the human eye. Electromagnetic radiation in this range of wavelengths is called visible light which have wavelengths from about 390 to 750 nm that is; ultraviolet light and visible light.
Answer:
0.278 m/s
Explanation:
We can answer the problem by using the law of conservation of momentum. In fact, the total momentum before the collision must be equal to the total momentum after the collision.
So we can write:

where
m = 0.200 kg is the mass of the koala bear
u = 0.750 m/s is the initial velocity of the koala bear
M = 0.350 kg is the mass of the other clay model
v is their final combined velocity
Solving the equation for v, we get

68 miles per hour 1.1333 miles per minute
Answer:
the acceleration of the car is 1.167 m/s²
Explanation:
Given;
initial velocity of the race car, u = 5 m/s
final velocity of the race car, v = 12 m/s
time to finish the race, t = 6 s
The acceleration of the car is calculated as;
a = (v - u) / t
a = (12 - 5) / (6)
a = 1.167 m/s²
Therefore, the acceleration of the car is 1.167 m/s²
Answer:
Approximately
(rounded down,) assuming that
.
The number of repetitions would increase if efficiency increases.
Explanation:
Ensure that all quantities involved are in standard units:
Energy from the cookie (should be in joules,
):
.
Height of the weight (should be in meters,
):
.
Energy required to lift the weight by
without acceleration:
.
At an efficiency of
, the actual amount of energy required to raise this weight to that height would be:
.
Divide
by
to find the number of times this weight could be lifted up within that energy budget:
.
Increasing the efficiency (the denominator) would reduce the amount of energy input required to achieve the same amount of useful work. Thus, the same energy budget would allow this weight to be lifted up for more times.