Answer:
W / A = 39200 kg / m²
Explanation:
For this problem let's use the equilibrium equation of / newton
F = W
Where F is the force of the door and W the weight of water
W = mg
We use the concept of density
ρ = m / V
m = ρ V
The volume of the water column is
V = A h
We replace
W = ρ A h g
On the other side the cylinder cover has a pressure
P = F / A
F = P A
We match the two equations
P A = ρ A h g
P = ρ g h
P = 39200 Pa
The weight of the water column is
W = 1000 9.8 4 A
W / A = 39200 kg / m²
Answer:
dorsiflexion
Explanation:
To decrease the angle between the anterior surface of the foot and anterior surface of the lower leg is described as: dorsiflexion
Answer:
6.8 m/s2
Explanation:
Let g = 9.8 m/s2. The total weight of both the rope and the mouse-robot is
W = Mg + mg = 1*9.8 + 2*9.8 = 29.4 N
For the rope to fails, the robot must act a force on the rope with an additional magnitude of 43 - 29.4 = 13.6 N. This force is generated by the robot itself when it's pulling itself up at an acceleration of
a = F/m = 13.6 / 2 = 6.8 m/s2
So the minimum magnitude of the acceleration would be 6.8 m/s2 for the rope to fail
Question:
A particle moving along the x-axis has a position given by x=(24t - 2.0t³)m, where t is measured in s. What is the magnitude of the acceleration of the particle at the instant when its velocity is zero
Answer:
24 m/s
Explanation:
Given:
x=(24t - 2.0t³)m
First find velocity function v(t):
v(t) = ẋ(t) = 24 - 2*3t²
v(t) = ẋ(t) = 24 - 6t²
Find the acceleration function a(t):
a(t) = Ẍ(t) = V(t) = -6*2t
a(t) = Ẍ(t) = V(t) = -12t
At acceleration = 0, take time as T in velocity function.
0 =v(T) = 24 - 6T²
Solve for T
Substitute -2 for t in acceleration function:
a(t) = a(T) = a(-2) = -12(-2) = 24 m/s
Acceleration = 24m/s