. . . 'protect' its domestic steel industry, by
increasing the price of imported steel.
Answer:
Yes energy does take up space.
Explanation:
Every form of energy has a defining characteristic; sound is the vibration of molecules, electricity is the movement of electrons, and mass is the thing that take up space.
Answer:
400000
Explanation:
So first solve one part:
(3.25 * 10^5)
(3.25 * 100,000)
= 325000
Then solve the next part:
(7.5 * 10^4)
(7.5 * 10000)
= 75000
Now lastly, add the two answers:
325000 + 75000 = 400000
Therefore,
(3.25 x 10^5) + (7.5 x 10^4) = 400000
Answer:
At the closest point
Explanation:
We can simply answer this question by applying Kepler's 2nd law of planetary motion.
It states that:
"A line connecting the center of the Sun to any other object orbiting around it (e.g. a comet) sweeps out equal areas in equal time intervals"
In this problem, we have a comet orbiting around the Sun:
- Its closest distance from the Sun is 0.6 AU
- Its farthest distance from the Sun is 35 AU
In order for Kepler's 2nd law to be valid, the line connecting the center of the Sun to the comet must move slower when the comet is farther away (because the area swept out is proportional to the product of the distance and of the velocity:
, therefore if r is larger, then v (velocity) must be lower).
On the other hand, when the the comet is closer to the Sun the line must move faster (
, if r is smaller, v must be higher). Therefore, the comet's orbital velocity will be the largest at the closest distance to the Sun, 0.6 A.
<span>It is used to establish and maintain a proton gradient.</span>