The magnitude and sign of the charge are 0.8 MC and negative respectively.
To find the answer, we need to know about the electric potential of a point charge.
<h3>What's the mathematical expression of the electric potential of a point charge?</h3>
- Mathematically, the electric potential at a distance 'r' from a point charge 'q' is given as (Kq)/r.
- K is the electrical constant with value 9×10^(-9) in vaccum.
<h3>What will be the magnitude and sign of a charge, if potential is -3.50V at 2mm?</h3>
From the expression of electric potential, charge is
q= (potential ×r)/K
= (-3.5×0.002)/ (9×10^(-9))
= -0.8 mega coulomb.
Thus, we can conclude that the magnitude and sign of the charge are 0.8 MC and negative respectively.
Learn more about the electric potential here:
brainly.com/question/14306881
#SPJ4
Answer:
a) Δφ = 1.51 rad
, b) x = 21.17 m
Explanation:
This is an interference problem, as they indicate that the distance AP is on the x-axis the antennas must be on the y-axis, the phase difference is
Δr /λ = Δfi / 2π
Δfi = Δr /λ 2π
Δr = r₂-r₁
let's look the distances
r₁ = 57.0 m
We use Pythagoras' theorem for the other distance
r₂ = √ (x² + y²)
r₂ = √(57² + 9.3²)
r₂ = 57.75 m
The difference is
Δr = 57.75 - 57.0
Δr = 0.75 m
Let's look for the wavelength
c = λ f
λ = c / f
λ = 3 10⁸ / 96.0 10⁶
λ = 3.12 m
Let's calculate
Δφ = 0.75 / 3.12 2π
Δφ = 1.51 rad
b) for destructive interference the path difference must be λ/2, the equation for destructive interference with φ = π remains
Δr = (2n + 1) λ / 2
For the first interference n = 0
Δr = λ / 2
Δr = r₂ - r₁
We substitute the values
√ (x² + y²) - x = 3.12 / 2
Let's solve for distance x
√ (x² + y²) = 1.56 + x
x² + y² = (1.56 + x)²
x² + y² = 1.56² + 2 1.56 x + x²
y2 = 20.4336 +3.12 x
x = (y² -20.4336) /3.12
x = (9.3² -20.4336) /3.12
x = 21.17 m
This is the distance for the first minimum
Let north as positive
Fnet=10n-5n
=5n north
During its lifepsan, the sun's core would keep contracting and heating up.
The temperature will keep increasing to the point where the temperature outside the core will get to hydrogen fusion temperatures.
The sun will grow in surface and eventually became the Red Giant
Answer:
F = 2389.603 N
Explanation:
Given:
Mass m = 1,369.4 kg
Initial velocity u = 28.9 m/s
Final velocity v = 20 m/s
Time t = 5.1 s
Find:
Net force
Computation:
a = (v - u)/t
a = (20 - 28.9)/5.1
a = -1.745 m/s²
F = ma
F = (1369.4)(1.745)
F = 2389.603 N