For counting x you use simple equation for the distance covered by the object when it moves with constant velocity:

that gives you 20m after 1st second, 40 m after 2nd second, 60 m after 3rd second and so on.
For counting y you have to use the equation for the distanced covered by the object moving with constantly accelerating velocity (symbols refering to vertical movement):

that gives you 5m after 1st second, 20m afters 2nd second, 45m after 3rd second and so on.
Add minus signs before y positions to receive graph presenting the movement of the ball.
So the points are: P1=[20,-5], P2=[40,-20], P3=[60,-45] and so on... Pn=[x,y].
I believe the answer is true
Given
Initial velocity:
36 ft/s
Initial height:
0 ft
Vertical motion model:
h(t) = -16t^2 + ut + s
v = initial velocity
s = is the height
Procedure
We are going to use the model provided for the vertical motion.

We know that at the maximum height the final velocity is 0.
Then we will use the following expression to calculate the maximum height:

Now for time:

Solving for t,

The total time the kangaroo takes in the air is 2.3s.
Answer:
23 hours 56 minutes 4.091 seconds
Explanation: