Answer:
14.85 m/s
Explanation:
From the question given above, the following data were obtained:
Height (h) of tower = 45 m
Horizontal distance (s) moved by the balloon = 45 m
Horizontal velocity (u) =?
Next, we shall determine the time taken for the balloon to hit the shoe of the passerby. This is illustrated below:
Height (h) of tower = 45 m
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) =?
h = ½gt²
45 = ½ × 9.8 × t²
45 = 4.8 × t²
Divide both side by 4.9
t² = 45/4.9
Take the square root of both side
t = √(45/4.9)
t = 3.03 s
Finally, we shall determine the magnitude of the horizontal velocity of the balloon as shown below:
Horizontal distance (s) moved by the balloon = 45 m
Time (t) = 3.03 s
Horizontal velocity (u) =?
s = ut
45 = u × 3.03
Divide both side by 3.03
u = 45/3.03
u = 14.85 m/s
Thus, the magnitude of the horizontal velocity of the balloon was 14.85 m/s
Answer: a= 52.02 m/s²
Fc= 78.03 N
Explanation: Solution attached:
Vi = 2m/s
a= 4.5 m/s
d= 340 m
vf= ?
use this equation ... vf^2=vi<span>^2+2ad
you should get vf = 55.3
hope this helps </span>
Answer:
<h2>velocity = 12.73 km/hr.</h2><h2 />
Explanation:
velocity = distance / time
=<u> 28 km </u>
2.2 hr
= 12.73 km/hr.
1) 29.8 C
At the beginning, the metal is at higher temperature (70.4 C) while the water is at lower temperature (23.6 C). When they are put in contact, the metal transfers heat to the water, until they reach thermal equilibrium: at thermal equilibrium the two objects (the metal and the water have same temperature). Therefore, since the temperature of the water at thermal equilibrium is 29.8 C, the final temperature of the metal must be the same (29.8 C).
2) 6.2 C
The temperature change of the water is given by the difference between its final temperature and its initial temperature:

where

Substituting into the formula,

And the positive sign means that the temperature of the water has increased.
3) -40.6 C
The temperature change of the metal is given by the difference between its final temperature and its initial temperature:

where

Substituting into the formula,

And the negative sign means the temperature of the metal has decreased.