<span><span>N2</span><span>O3</span><span>(g)</span>→NO<span>(g)</span>+<span>NO2</span><span>(g)</span></span>
<span><span>[<span>N2</span><span>O3</span>]</span> Initial Rate</span>
<span>0.1 M r<span>(t)</span>=0.66</span> M/s
<span>0.2 M r<span>(t)</span>=1.32</span> M/s
<span>0.3 M r<span>(t)</span>=1.98</span> M/s
We can have the relationship:
<span>(<span><span>[<span>N2</span><span>O3</span>]/</span><span><span>[<span>N2</span><span>O3</span>]</span>0</span></span>)^m</span>=<span><span>r<span>(t)/</span></span><span><span>r0</span><span>(t)
However,
</span></span></span>([N2O3]/[N2O3]0) = 2
Also, we assume m=1 which is the order of the reaction.
Thus, the relationship is simplified to,
r(t)/r0(t) = 2
r<span>(t)</span>=k<span>[<span>N2</span><span>O3</span>]</span>
0.66 <span>M/s=k×0.1 M</span>
<span>k=6.6</span> <span>s<span>−<span>1</span></span></span>
Answer:
T2= 7.3°C
Explanation:
To solve this problem we will use Charles law equation i.e,
V1/T1 = V2/T2
Given data
V1 = 269.7 L
T1 = 6.12 °C
V2= 320.4 L
T2=?
Solution:
Now we will put the values in equation
269.7 L / 6.12°C = 320.4 L / T2
T2= 320.4 L × 6.12°C/ 269.7 L
T2= 1960.85 °C. L /269.7 L
T2= 7.3°C
Answer:
4 valence electrons
Despite the fact that the word silicon has a ubiquitous affiliation with all things electronic, Si itself is not a good electrical conductor. It has 4 valence electrons, meaning that filling its outer shell it can form a very strong lattice with 4 neighboring Si atoms-with no un-bonded electrons remaining