Answer: 1. halve
2. halve
3. double
Explanation:
The relationship between wavelength and energy of the wave follows the equation:

E= energy
= wavelength of the wave
h = Planck's constant
c = speed of light
Thus as wavelength and energy have inverse realation, when wavelength will halve , energy will double.
2. The between wavenumber and energy of the wave follows the equation:

E= energy

= wavenumber of the wave
h = Planck's constant
c = speed of light
Thus as wavenumber and energy have direct relation, when wavenumber will halve , energy will be halved.
3. The relationship between energy and frequency of the wave follows the equation:

where
E = energy
h = Planck's constant
= frequency of the wave
Thus as frequency and energy have direct realation, when frequency will double , energy will double.
Answer:
Boiling water breaks intermolecular attractions and electrolysis breaks covalent bonds.
Explanation:
When water boils, hydrogen bonds are broken between adjacent water molecules. The hydrogen bond is an intermolecular bond between adjacent oxygen and hydrogen atoms of water molecules.
During electrolysis, water dissociates in the presence of electric current. Here, ions are formed in the process. Therefore, covalent bonds are broken here.
When particles collide with the surface of the solid.
Answer:
yes it is ( From +3 to 0 )
Explanation:
If this is the balanced equation:
AlCl3 + 3Na ——> 3NaCl + Al
Al Cl 3Na Na Cl Al
+3 -3 0 +1 -1 0