STP (Standard Temperature and Pressure) has the following conditions:
Temperature = 273.15 K = 0°C
Pressure = 101325 Pa = 101.325 KPa = 1 atm
We also know that 1 mole = 6.022x10^23 molecules
Using the ideal gas equation: PV=nRT
n/V = P/RT
molecules/V = P*6.022x10^23/RT
molecules/V = 101325 Pa (6.022x10^23 molecules/mole)/ (8.314 Pa-m3/mol-K)(273.15K)
molecules/V = 7.339x10^27 molecules/m^3 - Final answer
<span>On the y-axis (the bottom of the table) hope this helps</span>
Answer:
Tension in the cable is T = 16653.32 N
Explanation:
Give data:
Cross section Area A = 1.3 m^2
Drag coefficient CD = 1.2
Velocity V = 4.3 m/s
Angle made by cable with horizontal =30 degree
Density 
Drag force FD is given as


Drag force = 14422.2 N acting opposite to the motion
As cable made angle of 30 degree with horizontal thus horizontal component is take into action to calculate drag force
TCos30 = F_D


T = 16653.32 N
Explanation:
1 mega Hertz = 1000000 hertz