Answer: 3P/2
Explanation: Let the resistance of the bulbs be R.
now lets consider a Voltage V is supplied to the parallel circuit such that

V=IR
both single bulb( bulb 3) and the two bulbs ( bulb 1 and bulb 2) are provided the same Voltage
( as the voltage remains same in parallel circuit)
we can calculate the Current across both circuits
At Bulb 3
Current 1=V/R
Power1=Voltage * Current1
Power1=V*V/R
Power1=P
At Bulb 1 and Bulb 2
Total Resistance= R+R=2R

Power2=Voltage * Current2


Answer:
36km
Explanation:
Im pretty sure displacment is the start and finish in a straight line
Answer:
45200J
Explanation:
Given parameters:
Heat of vaporization of water = 2260J/g
Mass of steam = 20g
Temperature = 100°C
Unknown:
Energy released during the condensation = ?
Solution:
This change is a phase change and there is no change in temperature
To find the amount of heat released;
H = mL
m is the mass
L is the latent heat of vaporization
Insert the parameters and solve;
H = 20g x 2260J/g
H = 45200J
Answer:
(a) 89 m/s
(b) 11000 N
Explanation:
Note that answers are given to 2 significant figures which is what we have in the values in the question.
(a) Speed is given by the ratio of distance to time. In the question, the time given was the time it took the pulse to travel the length of the cable twice. Thus, the distance travelled is twice the length of the cable.

(b) The tension,
, is given by

where
is the speed,
is the tension and
is the mass per unit length.
Hence,

To determine
, we need to know the mass of the cable. We use the density formula:

where
is the mass and
is the volume.

If the length is denoted by
, then


The density of steel = 8050 kg/m3
The cable is approximately a cylinder with diameter 1.5 cm and length or height of 620 m. Its volume is



