Answer:
Here's what I get
Explanation:
1. Balanced equation
HQ⁻ + CH₃-Br ⟶ HQ-CH₃ + Br⁻
(I must use HQ because the Brainly Editor thinks the O makes a forbidden word)
2. Mechanism
HQ⁻ + CH₃-Br ⟶[HQ···CH₃···Br]⁻⟶ HQ-CH₃ + Br⁻
A C B
The hydroxide ion attacks the back side of the carbon atom in the bromomethane (A).
At the same time as the Q-H bond starts to form, the C-Br bond starts to break.
At the half-way point, we have a high-energy intermediate (C) with partially formed C-O and C-Br bonds.
As the reaction proceeds further, the Br atom drops off to form the products — methanol and bromide ion (B).
3. Energy diagram
See the diagram below.
Explanation:
An alpha particles is basically a helium nucleus and it contains 2 protons and 2 neutrons.
Symbol of an alpha particle is
. Whereas a neutron is represented by a symbol
, that is, it has zero protons and only 1 neutron.
Therefore, reaction equation when an aluminum- nuclide transforms into a phosphorus- nuclide by absorbing an alpha particle and emitting a neutron is as follows.

Answer:
2.67 mL
Explanation:
The following data were obtained from the question:
Mass of tetracycline = 2 mg
Density of tetracycline = 0.75 mg/mL
Volume of tetracycline =?
We can obtain the volume of the tetracycline that should be given to the patient by applying the following equation:
Density = mass /volume
0.75 = 2 / volume
Cross multiply
0.75 × Volume = 2
Divide both side by 0.75
Volume = 2/0.75
Volume = 2.67 mL
Therefore, the volume of the tetracycline that should be given to the patient is 2.67 mL
Answer:
Just show them their place.
Explanation:
hope this helps
D. or C. I think it is more D. than anything else