I think Geothermal but I’m not 100% sure
Answer: The final pressure is 34.48kPa
Initial Pressure P1 = 55.16kPa
Initial Volume V1 = 0.500L
Final Pressure P2 = ?
Final Volume V2 = 0.800L
Boyle's law P1V1 = P2 V2
P2 = P1V1/V2
P2 = 55.16*0.5/0.8
P2 = 34.48kPa
Answer:
<u>a</u><u>.</u><u> </u><u>True</u><u>.</u>
Explanation:
Only primary and secondary alcohols can oxidise to give an aldehyde. But a weak oxidizing agent must be used to prevent formation of a carboxylic acid or ketone.
weak oxidizing agents: Chromyl chloride, silver/oxygen/500°C
take an example of <u>e</u><u>t</u><u>h</u><u>a</u><u>n</u><u>o</u><u>l</u><u>:</u>
<u>
</u>
<u>
</u>
<u>B</u><u>y</u><u> </u><u>o</u><u>z</u><u>o</u><u>n</u><u>o</u><u>l</u><u>y</u><u>s</u><u>i</u><u>s</u><u>:</u>
Here, reactants are Ozone gas, Carbon tetrachloride at a temperature (<20°C), ethanoic acid, zinc and water.
take an example of propanol:
if it undergoes ozonolysis, it gives ethanal and methanal.
<u>Answer: </u>The molar mass of solute is 115 g/mol.
<u>Explanation:</u>
Elevation in the boiling point is defined as the difference between the boiling point of the solution and the boiling point of the pure solvent.
The expression for the calculation of elevation in boiling point is:

OR
......(1)
where,
Boiling point of pure solvent (benzene) = 
Boiling point of solution = 
i = Vant Hoff factor = 1 (for non-electrolytes)
= Boiling point elevation constant = 
= Given mass of solute = 10 g
= Molar mass of solute = ? g/mol
= Mass of solvent = 200 g
Putting values in equation 1, we get:

Hence, the molar mass of solute is 115 g/mol.