Answer:

Explanation:
As we know that magnetic field due to torroid is given as

this is approximately constant magnetic field along the axis of the torroid
now the flux linked with one coil of the torroid is given as


now total flux of N number of coils is given as

now we know that self inductance is the property of coil in which flux of the coil will link with the current in the coil
So we know that


Answer:
Explanation:
The rate of change in volume is proportional to the surface area:
dV/dt = kA
Integrating:
V = kAt + C
At t=0, V = s, so:
s = kA(0) + C
C = s
Therefore:
V = kAt + s
Answer:
221754385964.9123
Explanation:
Convert miles to nanometer
1 mile = 1.6 km
1 km = 1×10³×10³×10³×10³ nm
1 mile = 1.6×10¹² nm
So,
158 miles = 158×1.6×10¹² = 252.8×10¹² nm
Length of each molecule = 1140 nm
Number of molecules = Total length / Length of each molecule

There are 221754385964.9123 number of molecules in a stretch of 158 miles
Force on the particle is defined as the application of the force field of one particle on another particle. The magnitude and direction of the electrical force will be 4.05×10⁴N towards the north.
<h3>What is electrical force?</h3>
Force on the particle is defined as the application of the force field of one particle on another particle. It is a type of virtual force.
The given data in the problem is
q₁ is the negative charge = 6 µC=6×10⁻⁶ C
q₂ is the positive charge = 3 µC=3×10⁻⁶ C
r is the distance between the charges=0.002 m
is the electric force =?
The value of electric force will be;

Hence the magnitude and direction of the electrical force will be 4.05×10⁴N towards the north.
To learn more about the electrical force refer to the link;
brainly.com/question/1076352
The behavior of an ideal gas at constant temperature obeys Boyle's Law of
p*V = constant
where
p = pressure
V = volume.
Given:
State 1:
p₁ = 10⁵ N/m² (Pa)
V₁ = 2 m³
State 2:
V₂ = 1 m³
Therefore the pressure at state 2 is given by
p₂V₂ = p₁V₁
or
p₂ = (V₁/V₂) p₁
= 2 x 10⁵ Pa
Answer: 2 x 10⁵ N/m² or 2 atm.