Total displacement along the length of mountain is given as
L = 235 m
angle of mountain with horizontal = 35 degree
now we will have horizontal displacement as
x = L cos35
x = 235 cos35 = 192.5 m
similarly for vertical displacement we can say
y = L sin35
y = 235 sin35 = 134.8 m
Answer:
F = 2,894 N
Explanation:
For this exercise let's use Newton's second law
F = m a
The acceleration is centripetal
a = v² / r
Angular and linear variables are related.
v = w r
Let's replace
F = m w² r
The radius r and the length of the rope is related
cos is = r / L
r = L cos tea
Let's replace
F = m w² L cos θ
Let's reduce the magnitudes to the SI system
m = 101.7 g (1 kg / 1000g) = 0.1017 kg
θ = 5 rev (2π rad / rev) = 31,416 rad
w = θ / t
w = 31.416 / 5.1
w = 6.16 rad / s
F = 0.1017 6.16² 0.75 cos θ
F = 2,894 cos θ
The maximum value of F is for θ equal to zero
F = 2,894 N
Step 1 : Get your supply list together
Step 2 : Pick what model you want to do
Step 3 : Ask for a partner
Step 4 : Complete the model and take your time.
Step 5 : Read the directions carefully
Answer:
Less than 1 m
Explanation:
When objects are getting closer to each other there is a slight change in the wavelength that is being transmitted by either objects. This is known as the blue shift of waves. Here, the wavelength reduces.
In the opposite case the when objects are getting farther from each other there is a slight change in the wavelength that is being transmitted by either objects. This is known as the red shift. Here, the wavelength increases.
In this case the spaceship is getting close to Earth hence the wavelength will be lower than 1 m.
-17.555m/s
first I found the time it took for jacks stone to reach the bottom, using the formula vf = vi + at, vf and vi are final and initial velocities.
then i found the velocity at 6.6m using vf^2 = vi^2 + 2ad
and I found the time it took to get to 6.6m, so that I knew how long Jill waited to throw her stone, I used the formula d = t(vi+vf)/2, then i done total time - the time she waited, to get the time it took for there stones to hit the ground at the same time.
then to find the initial velocity of her throw I used the formula d = vit + (at^2)/2