The alkali metals are so reactive that they are never found in nature in elemental form. Although some of their ores are abundant, isolating them from their ores is somewhat difficult. For these reasons, the group 1 elements were unknown until the early 19th century, when Sir Humphry Davy first prepared sodium (Na) and potassium (K) by passing an electric current through molten alkalis. (The ashes produced by the combustion of wood are largely composed of potassium and sodium carbonate.) Lithium (Li) was discovered 10 years later when the Swedish chemist Johan Arfwedson was studying the composition of a new Brazilian mineral. Cesium (Cs) and rubidium (Rb) were not discovered until the 1860s, when Robert Bunsen conducted a systematic search for new elements. Known to chemistry students as the inventor of the Bunsen burner, Bunsen’s spectroscopic studies of ores showed sky blue and deep red emission lines that he attributed to two new elements, Cs and Rb, respectively. Francium (Fr) is found in only trace amounts in nature, so our knowledge of its chemistry is limited. All the isotopes of Fr have very short half-lives, in contrast to the other elements in group 1.
The range for em radiation should be a range of 50 yards hope this help's. <span />
The standard formation equation for glucose C6H12O6(s) that corresponds to the standard enthalpy of formation or enthalpy change ΔH°f = -1273.3 kJ/mol is
C(s) + H2(g) + O2(g) → C6H12O6(s)
and the balanced chemical equation is
6C(s) + 6H2(g) + 3O2(g) → C6H12O6(s)
Using the equation for the standard enthalpy change of formation
ΔHoreaction = ∑ΔHof(products)−∑ΔHof(Reactants)
ΔHoreaction = ΔHfo[C6H12O6(s)] - {ΔHfo[C(s, graphite) + ΔHfo[H2(g)] + ΔHfo[O2(g)]}
C(s), H2(g), and O2(g) each have a standard enthalpy of formation equal to 0 since they are in their most stable forms:
ΔHoreaction = [1*-1273.3] - [(6*0) + (6*0) + (3*0)]
= -1273.3 - (0 + 0 + 0)
= -1273.3
Answer:
P = 13.5 atm
Explanation:
Given that
No. of moles, n = 20 moles
Volume of nitrogen gas = 36.2 L
Temperature = 25°C = 298 K
We need to find the pressure of the gas. Using the ideal gas equation
PV = nRT
Where
R is gas constant, 
So,

so, the pressure of the gas is equal to 13.5 atm.