Answer:
B. Ba2+ and Mn (nevermind its not B)
Explanation:
Answer:
Specific heat of metal = 0.26 j/g.°C
Explanation:
Given data:
Mass of sample = 80.0 g
Initial temperature = 55.5 °C
Final temperature = 81.75 °C
Amount of heat absorbed = 540 j
Specific heat of metal = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 81.75 °C - 55.5 °C
ΔT = 26.25 °C
540 j = 80 g × c × 26.25 °C
540 j = 2100 g.°C× c
540 j / 2100 g.°C = c
c = 0.26 j/g.°C
<h3>
Answer:</h3>
2Fe(HCO₃)₃ → Fe₂(CO₃)₃ + 3H₂O + 3CO₂
<h3>
Explanation:</h3>
- A decomposition reaction is one in which a large compound is broken down into smaller compounds or individual elements.
- The decomposition reaction Iron (iii) hydrogen carbonate yield iron (iii) carbonate, water and carbon dioxide.
Fe(HCO₃)₃ → Fe₂(CO₃)₃ + H₂O + CO₂
- A balanced equation is the one in which the number of atoms of each element are equal on both side of the equation.
- Therefore; the balanced equation for the decomposition of Iron (iii) hydrogen carbonate is given by;
2Fe(HCO₃)₃ → Fe₂(CO₃)₃ + 3H₂O + 3CO₂
Answer:
added water = 171 ml
Explanation:
Assuming volumes are additive, the rule that we will use to solve this question is:
M1V1 = M2V2
where:
M1 is the initial concentration = 0.4 m
V1 is the initial volume = 57 ml
M2 is the final concentration = 0.1 m
V2 is the final volume that we want to calculate
Substitute with the given in the above equation to get V2 as follows:
M1V1 = M2V2
(0.4)(57) = (0.1)V2
22.8 = 0.1V2
V2 = 228 ml
Now, the final volume is equal to the initial volume plus the amount of added water. So, to get the amount of added water, we will subtract the initial volume from the final volume as follows:
V2 = V1 + added water
228 = 57 + added water
added water = 228 - 57 = 171 ml
Hope this helps :)