Answer:
Artefacts can influence our actions in several ways. They can be instruments, enabling and facilitating actions, where their presence affects the number and quality of the options for action available to us. They can also influence our actions in a morally more salient way, where their presence changes the likelihood that we will actually perform certain actions. Both kinds of influences are closely related, yet accounts of how they work have been developed largely independently, within different conceptual frameworks and for different purposes. In this paper I account for both kinds of influences within a single framework. Specifically, I develop a descriptive account of how the presence of artefacts affects what we actually do, which is based on a framework commonly used for normative investigations into how the presence of artefacts affects what we can do. This account describes the influence of artefacts on what we actually do in terms of the way facts about those artefacts alter our reasons for action. In developing this account, I will build on Dancy’s (2000a) account of practical reasoning. I will compare my account with two alternatives, those of Latour and Verbeek, and show how my account suggests a specification of their respective key concepts of prescription and invitation. Furthermore, I argue that my account helps us in analysing why the presence of artefacts sometimes fails to influence our actions, contrary to designer expectations or intentions.
When it comes to affecting human actions, it seems artefacts can play two roles. In their first role they can enable or facilitate human actions. Here, the presence of artefacts changes the number and quality of the options for action available to us.Footnote1 For example, their presence makes it possible for us to do things that we would not otherwise be able to do, and thereby adopt new goals, or helps us to do things we would otherwise be able to do, but in more time, with greater effort, etc
Explanation:
Technological artifacts are in general characterized narrowly as material objects made by (human) agents as means to achieve practical ends. ... Unintended by-products of making (e.g. sawdust) or of experiments (e.g. false positives in medical diagnostic tests) are not artifacts for Hilpinen.
Explanation:
Production planning: Planning is ideal so that there are the right resources, at the right time and in the right quantity that can meet the production needs of a period.
Strategies: The strategic development of production is the area that will assist in organizational competitiveness and in meeting consumer demand and needs.
Product and service design: Development of new products and services and their improvement, innovations and greater benefits
Production systems: Study of physical arrangements so that production takes place effectively according to the ideal layout for each type of product or service.
Production capacity planning: Analysis of the short, medium and long term related to production, and identification if necessary to obtain more resources, increase in staff, machinery, etc., to meet present and future demands.
<em>Each area of knowledge acquired will assist in the development of a professional career, as technical knowledge is essential in decision-making, provision, problem solving, the development of new ideas and innovation.</em>
Answer:
The total energy of the motor of the electric vehicle is 1.902 × 10⁸ joules.
Explanation:
Power is the rate of change of work in time, since given input is average power, the total energy (
) of the motor of the electric vehicle, measured in joules, is determined by this formula:

Where:
- Average power, measured in watts.
- Time, measured in seconds.
Now, let convert average power and time into watts and seconds, respectively:
Average Power


Time


Then, the total energy is:


The total energy of the motor of the electric vehicle is 1.902 × 10⁸ joules.