Answer:
The temperature T= 648.07k
Explanation:
T1=input temperature of the first heat engine =1400k
T=output temperature of the first heat engine and input temperature of the second heat engine= unknown
T3=output temperature of the second heat engine=300k
but carnot efficiency of heat engine =
where Th =temperature at which the heat enters the engine
Tl is the temperature of the environment
since both engines have the same thermal capacities <em> </em> therefore
We have now that
multiplying through by T
multiplying through by 300
-
The temperature T= 648.07k
Answer:
camshaft, in internal-combustion engines, rotating shaft with attached disks of irregular shape (the cams), which actuate the intake and exhaust valves of the cylinders.
Explanation:
I'm taking an engineering/tech class. I hope this helps! :)
Answer:
note:
solution is attached due to error in mathematical equation. please find the attachment
Answer:
Explanation:
In this problem you need to define the force that acts upon a beam in a 3 point bending problem. I put a picture of the problem taken from Wikipedia:
In this problem the flexural strength is defined with the following formula:
where F is the force applied, L the length between the two rods, b the width of the ceramic block and d it's height.
The force is then defined as: