Velocity = distance / time
v = (15*1000)m / (2*60*60)s
v=2.08 m / s
Answer:
4. All of the above I think, not to sure about 1. but the rest are right so im like 90.99999 percent sure good luck
Answer:
Capacitive Reactance is 4 times of resistance
Solution:
As per the question:
R = 
where
R = resistance

f = fixed frequency
Now,
For a parallel plate capacitor, capacitance, C:

where
x = separation between the parallel plates
Thus
C ∝ 
Now, if the distance reduces to one-third:
Capacitance becomes 3 times of the initial capacitace, i.e., x' = 3x, then C' = 3C and hence Current, I becomes 3I.
Also,

Also,
Z ∝ I
Therefore,




Solving the above eqn:

Answer:
The puck moves a vertical height of 2.6 cm before stopping
Explanation:
As the puck is accelerated by the spring, the kinetic energy of the puck equals the elastic potential energy of the spring.
So, 1/2mv² = 1/2kx² where m = mass of puck = 39.2 g = 0.0392 g, v = velocity of puck, k = spring constant = 59 N/m and x = compression of spring = 1.3 cm = 0.013 cm.
Now, since the puck has an initial velocity, v before it slides up the inclined surface, its loss in kinetic energy equals its gain in potential energy before it stops. So
1/2mv² = mgh where h = vertical height puck moves and g = acceleration due to gravity = 9.8 m/s².
Substituting the kinetic energy of the puck for the potential energy of the spring, we have
1/2kx² = mgh
h = kx²/2mg
= 59 N/m × (0.013 m)²/(0.0392 kg × 9.8 m/s²)
= 0.009971 Nm/0.38416 N
= 0.0259 m
= 2.59 cm
≅ 2.6 cm
So the puck moves a vertical height of 2.6 cm before stopping
find acceleration force divided by Mass
a=f/m