1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Verdich [7]
3 years ago
15

M∠HGF=16x+4, m∠EGF=110 degrees, and m∠HGE=3x+11. Find x.

Mathematics
2 answers:
zloy xaker [14]3 years ago
5 0

Answer:  The required value of x is 9.

Step-by-step explanation:  We are given the following :

m\angle HGF=16x+4,~~~m\angle EGF=110^\circ~~~\textup{and}~~~m\angle HGE=3x+11.

We are to find the value of x.

From the figure, we note that

m\angle HGF=m\angle EGF+m\angle HGE\\\\\Rightarrow 16x+4=110+(3x+11)\\\\\Rightarrow 16x+4=3x+121\\\\\Rightarrow 16x-3x=121-4\\\\\Rightarrow 13x=117\\\\\Rightarrow x=\dfrac{117}{13}\\\\\Rightarrow x=9.

Thus, the required value of x is 9.

Rasek [7]3 years ago
3 0
I hope this helps you




16x+4=110+3x+11


13x=117


x=9
You might be interested in
The given lengths are two sides of a right triangle. All three side lengths of the triangle are integers, and together they form
mel-nik [20]
The correct answer is “A” 40,leg
8 0
3 years ago
___,36 ,108 ,324 ,972
hjlf
12

First figure out of it is a arithmetic or geometric sequence, in this case it is a geometric sequence because you have to multiply, not add to find the next number.

Divide one number, I'll pick 324 by the number before it, 108, you get three.

Now divide 36 by 3, you get 12.

To check, multiply 12 by 3, you get 36, multiply that by 3, you get 108, and so on and so forth.
3 0
3 years ago
PLEASE HELP ME GUYS OR I WONT PASS <br>this calculus!!!!​
KonstantinChe [14]

Answer:

b.  \displaystyle \frac{1}{2}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Functions
  • Function Notation
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}<u> </u>

<u>Calculus</u>

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                       \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

<em />\displaystyle H(x) = \sqrt[3]{F(x)}<em />

<em />

<u>Step 2: Differentiate</u>

  1. Rewrite function [Exponential Rule - Root Rewrite]:                                      \displaystyle H(x) = [F(x)]^\bigg{\frac{1}{3}}
  2. Chain Rule:                                                                                                        \displaystyle H'(x) = \frac{d}{dx} \bigg[ [F(x)]^\bigg{\frac{1}{3}} \bigg] \cdot \frac{d}{dx}[F(x)]
  3. Basic Power Rule:                                                                                             \displaystyle H'(x) = \frac{1}{3}[F(x)]^\bigg{\frac{1}{3} - 1} \cdot F'(x)
  4. Simplify:                                                                                                             \displaystyle H'(x) = \frac{F'(x)}{3}[F(x)]^\bigg{\frac{-2}{3}}
  5. Rewrite [Exponential Rule - Rewrite]:                                                              \displaystyle H'(x) = \frac{F'(x)}{3[F(x)]^\bigg{\frac{2}{3}}}

<u>Step 3: Evaluate</u>

  1. Substitute in <em>x</em> [Derivative]:                                                                              \displaystyle H'(5) = \frac{F'(5)}{3[F(5)]^\bigg{\frac{2}{3}}}
  2. Substitute in function values:                                                                          \displaystyle H'(5) = \frac{6}{3(8)^\bigg{\frac{2}{3}}}
  3. Exponents:                                                                                                        \displaystyle H'(5) = \frac{6}{3(4)}
  4. Multiply:                                                                                                             \displaystyle H'(5) = \frac{6}{12}
  5. Simplify:                                                                                                             \displaystyle H'(5) = \frac{1}{2}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Derivatives

Book: College Calculus 10e

5 0
3 years ago
HELP ASAP How many times will the digit '3' appear if we write all whole numbers from 1 to 99?
Liula [17]

Answer:3,13,23,30,31,32,33,34,35,36,37,38,39,43,53,63,73,83,93

Step-by-step explanation:

You gotta count I did this quick

8 0
3 years ago
Read 2 more answers
Which is it.<br> Top left, top right, bottom left, or bottom right
shutvik [7]

Answer:

Option in the "bottom left" is correct choice.

Step-by-step explanation:

The volume of a sphere will become 27 times greater if diameter is tripled.

5 0
3 years ago
Other questions:
  • The function p(x)= 2x+1 determines how many pizzas need to be purchased for an after school meeting, where x is the number of st
    13·2 answers
  • What is the value of the following:A)3/8*0.125+2.5
    13·1 answer
  • Decrease 5 1/4 m by 50cm answer in metres
    13·2 answers
  • Question Five
    15·1 answer
  • 4x + 5y = 7 and 8x + 5y = 9 *<br> Elimination
    7·2 answers
  • People who experience online harassment either ignore it or respond via postings or involving authorities Is one method more eff
    9·1 answer
  • If the expression 9x + (4 – 3x) + 7is simplified completely, how many terms will the expression contain?
    7·2 answers
  • Write the expression 17 4/3 using radicals :)
    7·1 answer
  • Simplify (-8.5)X(-5)( -2).
    10·2 answers
  • What is the value of x in the figure?<br> Enter your answer in the box.<br> x =__
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!