Answer:
v=3.66,h-3.66
Explanation:
vertical = 10sin60 - 10sin 30
horizontal =10cos60 + 10cos 30
v = 10×0.8660-10×0.5
h = 10×0.5 + 10 × 0.8660
v=8.660-5.0 = 3.66
h= 5.0-8.660 = -3.66
The average force applied to the ball= 106.7 N
Explanation:
Force is given by
f= ΔP/t
ΔP= change in momentum= m Vf- m Vi
m= mass =0.2 kg
Vf= final velocity= 12 m/s
Vi=initial velocity= -20 m/s ( negative because it is going towards the wall which is treated as negative axis)
t= time= 60 ms= 0.06 s
now ΔP= 0.2 [ 12-(-20)]
ΔP=0.2 (32)=6.4 kg m/s
now force F= ΔP/t
F= 6.4/0.06
F=106.7 N
Answer:
k = 
b = 
t = 
Solution:
As per the question:
Mass of the block, m = 1000 kg
Height, h = 10 m
Equilibrium position, x = 0.2 m
Now,
The velocity when the mass falls from a height of 10 m is given by the third eqn of motion:

where
u = initial velocity = 0
g = 10
Thus

Force on the mass is given by:
F = mg = 
Also, we know that the spring force is given by:
F = - kx
Thus

Now, to find the damping constant b, we know that:
F = - bv

Now,
Time required for the platform to get settled to 1 mm or 0.001 m is given by:

Answer:
0.96 m, upward
Explanation:



Initial velocity, u=0


Where 
Substitute the values





Hence,the block moves upward because displacement is positive.