Answer:
Explanation:
In order to solve this problem we need to make a free body diagram of the book and the forces that interact on it. In the picture below you can see the free body diagram with these forces.
The person holding the book is compressing it with his hands, thus exerting a couple of forces of equal magnitude and opposite direction with value F.
Now the key to solving this problem is to analyze the equilibrium condition (Newton's third law) on the x & y axes.
To find the weight of the book we simply multiply the mass of the book by gravity.
W = m*g
W = 1.3[kg] * 9.81[m/s^2]
W = 12.75 [N]
When the Sun's energy moves through space, it reaches Earth's atmosphere and finally the surface. This radiant solar energy warms the atmosphere and becomes heat energy. This heat energy is transferred throughout the planet's systems in three ways: by radiation, conduction, and convection.
2) Unbalanced. Mike will push the box with a force of 20 N. The forces would be balanced if the box responded with 30 N.
3) Balanced. Both boys are pulling with the same force. Neither is winning.
4) Unbalanced. The rope will move with 10 N to the west. The teachers are winning.
5) Unbalanced. The kids are pulling 220 N to the east. The kids are winning.
6) Balanced. You and the dog are pulling with the same force.
Answer:
v = 3.00 x 10⁸ m/s
Explanation:
given,
speed of light in vacuum = 299,792,458 m/s
speed of light in scientific notation to three significant figures
v = 2.99792458 x 10⁸ m/s
by rounding off the speed to three significant figure.
v = 3.00 x 10⁸ m/s
On the fourth place the value is greater than 5 so, on the third place 1 will be added.
now, the speed with three significant figure comes out to be
v = 3.00 x 10⁸ m/s
A spontaneous reaction is a term that is best describe to a type of reaction wherein it is started without even with the help of an outside force. In addition to that, this kind of reaction is commonly driven by the forces of enthalpy and entropy which are essential concepts to thermodynamics.