Answer:
The outbreak of tornadoes that tore across the Gulf and the East Coast Tuesday and Wednesday was unusual for two reasons. For one thing, the severe weather encompassed a significant swath of the country. For another, winter is the least likely time for tornadic thunderstorms.
Explanation:
The outbreak of tornadoes that tore across the Gulf and the East Coast Tuesday and Wednesday was unusual for two reasons. For one thing, the severe weather encompassed a significant swath of the country. For another, winter is the least likely time for tornadic thunderstorms.
And yet tornadoes are an expected part of life in the United States—especially in the multi-state area known as Tornado Alley. (Florida, too, sees a disproportionately high number of tornadoes, because of its frequent thunderstorms.) The United States gets more tornadoes, by far, than any other place on the planet. It averages about 1,250 twisters a year. Canada, which sees about 100 tornadoes per year, is a “distant second,” according to the National Centers for Environmental Information.
Answer:

Explanation:
Assuming the light takes essentially no time to reach you, the distance at which the lightning occurred can be calculated by multiplying the speed of sound by the time it takes to hear the thunder:

Answer:
Aesthetic sports
Explanation:
Aesthetic sports are the one's that need well-developed physical qualities such as strength, agility, stamina, flexibility, and technical knowledge and artistry, in addition to technical ability and artistry. Elite athletes in these sports generally have a low abdominal fat , and the ranking is subjective.
In aesthetic sports like gymnastics, swimming, and figure skaters, dynamic and proactive flexibility is required.
Answer: the water level would rise since the pebble displaces minimal water compared to the boat.
Explanation:..........
Answer:
208 Joules
Explanation:
The radius of the circular path the charge moves, r = 26 m
The magnetic force acting on the charge particle, F = 16 N
Centripetal force,
= m·v²/r
Kinetic energy, K.E. = (1/2)·m·v²
Where;
m = The mass of the charged particle
v = The velocity of the charged particle
r = The radius of the path of the charged particle
Whereby the magnetic force acting on the charge particle = The centripetal force, we have;
F =
= m·v²/r = 16 N
(1/2) × r ×
= (1/2) × r × m·v²/r = (1/2)·m·v² = K.E.
∴ (1/2) × r ×
= (1/2) × 26 m × 16 N = = (1/2)·m·v² = K.E.
∴ 208 Joules = K.E.
The kinetic energy of an particle moving in the circular path, K.E. = 208 Joules.