The equation
(option 3) represents the horizontal momentum of a 15 kg lab cart moving with a constant velocity, v, and that continues moving after a 2 kg object is dropped into it.
The horizontal momentum is given by:


Where:
- m₁: is the mass of the lab cart = 15 kg
- m₂: is the <em>mass </em>of the object dropped = 2 kg
: is the initial velocity of the<em> lab cart </em>
: is the <em>initial velocit</em>y of the <em>object </em>= 0 (it is dropped)
: is the final velocity of the<em> lab cart </em>
: is the <em>final velocity</em> of the <em>object </em>
Then, the horizontal momentum is:

When the object is dropped into the lab cart, the final velocity of the lab cart and the object <u>will be the same</u>, so:

Therefore, the equation
represents the horizontal momentum (option 3).
Learn more about linear momentum here:
I hope it helps you!
Answer:
False
Explanation:
Because when you go through east
( +x axis ) then you go to west ( -x axis )
You will subtract -9 from +15
it's become +6
( I talk about the displacement not distance) ( West = - East )
I hope that it's a clear ") .
Answer:
SURE!!!...
But what to calculate!!!....
Answer:
0.2687 approximately 0.27
Explanation:
Diameter = 0.320
Speed = 40.0 rev/min
We are required to find coefficient of static friction between friction and button
The radius can be calculated as
0.320/2
= 0.160m
Then we have the rotational speed w = 40rev/min x 2pi/60
= 4.19 rad/s
umg = mrw²
u = mrw²/mg
u = rw²/g -------(1)
g = 9.8
When we put values into equation 1
0.150m x 4.19² / 9.8
= 0.150m x 17.5561 /9.8
= 0.2689
This is approximately 0.27