Answer:
I know they are stable, have no electrical charge, have interactions with electrons.
Explanation:
Answer:
y₀ = 1020.3 m
Explanation:
This is a projectile launching exercise, in this case as the package is released its initial vertical velocity is zero.
y = y₀ +
t - ½ g t²
when it reaches the ground its height is zero
0 = y₀ + 0 - ½ g t²
y₀ = ½ g t²
let's calculate
y₀ = ½ 9.8 14.43²
y₀ = 1020.3 m
The magnetic field lines due to a straight, current-carrying wire are circular.
<u>Explanation:</u>
The concepts of Electromagnetism brought a new revolution to the science world. The idea is the source of many new modes of power and machines that reduces the manual work. Motors are the best example of machines that run on the concepts of electromagnetism. So the concept is that a current-carrying conductor induces a magnetic field in its nearby premise.
This magnetic field can perceive by the magnetic line of forces. Now, if we pour some iron dust around a current-carrying conductor, we'll see a concentric circular pattern around the straight wire whose centre will be at the conductor axis. The pattern of these magnetic lines of force may deflect with the variation of current in the wire but remain in the circular format.
Answer:
The fireman will continue to descend, but with a constant speed.
Explanation:
In kinetic friction <em>(which is the case discussed here) </em>since the fireman is already in motion because of a certain force, once the frictional force matches the normal force, the fireman will stop accelerating and continue moving at a constant rate with the original speed he had. We will need a force greater than the normal force acting on the fireman to cause a deceleration.
We need to understand the difference between static friction and kinetic friction.
Static friction occurs in objects that are stationary, while kinetic friction occurs in objects that are already in motion.
In static friction, when the frictional force matches the weight or normal force of the object, the object remains stationary.
While in kinetic friction, when the frictional force matches the normal force, the object will stop accelerating. This is the case of the fireman sliding down the pole as discussed above.