Answer:

Explanation:
We will need a balanced equation with masses, moles, and molar masses, so let’s gather all the information in one place.
Mᵣ: 44.01
C₃H₈ + 5O₂ ⟶ 3CO₂ + 4H₂O
n/mol: 1.5
1. Calculate the moles of CO₂
The molar ratio is 3 mol CO₂:1 mol C₃H₈

2. Calculate the mass of CO₂.

Answer:
Explanation:
The Ce metal has electronic configuration as follows
[Xe] 4f¹5d¹6s²
After losing 4 electrons , it gains noble gas configuration ,. So Ce ⁺⁴ is stable.
Eu has electronic configuration as follows
[ Xe ] 4 f ⁷6s²
[ Xe ] 4 f ⁷
Its outermost orbit contains 2 electrons so Eu²⁺ is stable. Its +3 oxidation state is also stable.
Ce⁺²
The equation for the nuclear fusion reaction is,
4 ¹₁H → ₂⁴He + 2 ₁⁰e
Calculation of mass defect,
Δm = [mass of products - mass of reactants]
= 4(1.00782) - [4.00260 + 2(0.00054858)]
= 0.0275828 g/mole
Given that,
Mass of Hydrogen-1 = 2.58 g
The no. of moles of ₁¹H = 2.58 g / 1.00782 = 2.56 moles
Therefore, the mass defect for 2.58 g of ₁¹H is,
= 2.56 moles * (0.0275828 g / 4) = 0.01765 x 10⁻³ kg
Energy for (0.01765 x 10⁻³ kg) is,
= (0.01765 x 10⁻³ kg) (3.0 x 10⁸)² = 1.59 x 10¹² J
Complete Question:
To aid in the prevention of tooth decay, it is recommended that drinking water contain 0.800 ppm fluoride. How many grams of F− must be added to a cylindrical water reservoir having a diameter of 2.02 × 102 m and a depth of 87.32 m?
Answer:
2.23x10⁶ g
Explanation:
The concentration of the fluoride (F⁻) must be 0.800 ppm, which is 0.800 parts per million, so the water must have 0.800 g of F⁻/ 1000000 g of the solution. The density of the water at room temperature is 997 kg/m³ = 997x10³ g/m³. So, the concentration of the fluoride will be:
0.800 g of F⁻/ 1000000 g of the solution * 997x10³ g/m³
0.7976 g/m³
The volume of the reservoir is the volume of the cylinder: area of the base * depth. The base is a circumference, which has an area:
A = πR², where R is the radius = 1.01x10² m (half of the diameter)
A = π*(1.01x10²)²
A = 32047 m²
The volume is then:
V = 32047 * 87.32
V = 2.7983x10⁶ m³
The mass of the F⁻ is the concentration multiplied by the volume:
m = 0.7976 * 2.7983x10⁶
m = 2.23x10⁶ g