Answer:
pH = 6.999
The solution is acidic.
Explanation:
HBr is a strong acid, a very strong one.
In water, this acid is totally dissociated.
HBr + H₂O → H₃O⁺ + Br⁻
We can think pH, as - log 7.75×10⁻¹² but this is 11.1
acid pH can't never be higher than 7.
We apply the charge balance:
[H⁺] = [Br⁻] + [OH⁻]
All the protons come from the bromide and the OH⁻ that come from water.
We can also think [OH⁻] = Kw / [H⁺] so:
[H⁺] = [Br⁻] + Kw / [H⁺]
Now, our unknown is [H⁺]
[H⁺] = 7.75×10⁻¹² + 1×10⁻¹⁴ / [H⁺]
[H⁺] = (7.75×10⁻¹² [H⁺] + 1×10⁻¹⁴) / [H⁺]
This is quadratic equation: [H⁺]² - 7.75×10⁻¹² [H⁺] - 1×10⁻¹⁴
a = 1 ; b = - 7.75×10⁻¹² ; c = -1×10⁻¹⁴
(-b +- √(b² - 4ac) / (2a)
[H⁺] = 1.000038751×10⁻⁷
- log [H⁺] = pH → 6.999
A very strong acid as HBr, in this case, it is so diluted that its pH is almost neutral.
Answer:
trial 2: 0.74
trial 3: 5.19
I think but the equation for sloving percent error is:
(true value - determined value)/true value * 100
Explanation:
Answer:
~1.5 g/cm3 and it does NOT float in water.
Explanation:
If you look at the graph, Object A weighs ~6 grams and is ~4 cm3 in volume
Density = Mass/Volume
So 6 grams/4 cm3 = 1.5 g/cm3
Water has a density of 1 g/cm3 and because Object A density is higher than that of water, it sinks.
:)
Answer:
Explanation:
Primary and secondary succession occur after both human and natural events that cause drastic change in the makeup of an area. Primary succession occurs in areas where there is no soil and secondary succession occurs in areas where there is soil.
In primary succession, newly exposed or newly formed rock is colonized by living things for the first time. In secondary succession, an area previously occupied by living things is disturbed—disrupted—then recolonized following the disturbance.
Hope this helped :)
-<em>Akito</em>