Answer:
Q = 5.06 x 10⁻⁸ m³/s
Explanation:
Given:
v=0.00062 m² /s and ρ= 850 kg/m³
diameter = 8 mm
length of horizontal pipe = 40 m
Dynamic viscosity =
μ = ρv
=850 x 0.00062
= 0.527 kg/m·s
The pressure at the bottom of the tank is:
P₁,gauge = ρ g h = 850 x 9.8 x 4 = 33.32 kN/m²
The laminar flow rate through a horizontal pipe is:


Q = 5.06 x 10⁻⁸ m³/s
Given data:
•) applied voltage = 15 V
•). Resistance = 1000 ohm
Required:
•). The magnitude of current= ?
•••••••••••••SOLUTION•••••••••••••
We can find the relation ship between current, voltage and resistance with the help of Ohms law.
According to ohms law;
V= IR.
Rearranging the above equation;
I= V/ R
Putt the values in the above equation; we get
I= 15V/ 1000ohm
I = 0.015 A( ampere)
••••••••••••••• CONCLUSION•••••••
The value of the current would be 0.15 ampere when Resistance is equal to 1000 and that of Voltage is equal to 15 V.
Answer:
T₂ =93.77 °C
Explanation:
Initial temperature ,T₁ =27°C= 273 +27 = 300 K
We know that
Absolute pressure = Gauge pressure + Atmospheric pressure
Initial pressure ,P₁ = 300+1=301 kPa
Final pressure ,P₂= 367+1 = 368 kPa
Lets take temperature=T₂
We know that ,If the volume of the gas is constant ,then we can say that


Now by putting the values in the above equation we get

The temperature in °C
T₂ = 366.77 - 273 °C
T₂ =93.77 °C
Answer:
Program that removes all spaces from the given input
Explanation:
// An efficient Java program to remove all spaces
// from a string
class GFG
{
// Function to remove all spaces
// from a given string
static int removeSpaces(char []str)
{
// To keep track of non-space character count
int count = 0;
// Traverse the given string.
// If current character
// is not space, then place
// it at index 'count++'
for (int i = 0; i<str.length; i++)
if (str[i] != ' ')
str[count++] = str[i]; // here count is
// incremented
return count;
}
// Driver code
public static void main(String[] args)
{
char str[] = "g eeks for ge eeks ".toCharArray();
int i = removeSpaces(str);
System.out.println(String.valueOf(str).subSequence(0, i));
}
}