Answer:
if I am not wrong the volumetric flow rate into the finance if the year inter 868 1.00 pm
Answer:
0.1047N
Explanation:
To solve this problem we must remember the conversion factors, remembering that 1 revolution equals 2π radians and 1min equals 60s
![N\frac{rev}{min} \frac{2\pi }{1rev} \frac{1min}{60} =N\frac{2\pi }{60} =0.1047N](https://tex.z-dn.net/?f=N%5Cfrac%7Brev%7D%7Bmin%7D%20%5Cfrac%7B2%5Cpi%20%7D%7B1rev%7D%20%5Cfrac%7B1min%7D%7B60%7D%20%3DN%5Cfrac%7B2%5Cpi%20%7D%7B60%7D%20%3D0.1047N)
in conclusion, to know how many rad / s an element rotates which is expressed in Rev / min we must only multiply by 0.1047
5/2055 classes displayed there’s Nooooob changes
Answer:
the order higher is 3p79g5t88=yv5379
Answer and Explanation:
clear all; close all;
N=512;
t=(1:N)/N;
fs=1000;
f=(1:N)*fs/N;
x= sin(2*pi*200*t) + sin(2*pi*400*t);
y= sin(2*pi*200*t) + sin(2*pi*900*t);
for n = 1:20
a(n) = (2/N)*sum(x.*(cos(2*pi*n*t)))
b(n) = (2/N)*sum(x.*(sin(2*pi*n*t)))
c(n) = sqrt(a(n).^2+b(n).^2)
theta(n) =-(360/(2*pi))*atan(b(n)./a(n));
end
plot(f(1:20),c(1:20),'rd');
disp([a(1:4),b(1:4),c(1:4),theta(1:4)])