Answer:
battery life in year = 9 years and 48 days
Explanation:
given data
Battery Ampere-hours = 1.5
Pulse voltage = 2 V
Pulse width = 1.5 m sec
Pulse time period = 1 sec
Electrode heart resistance = 150 Ω
Current drain on the battery = 1.25 µA
to find out
battery life in years
solution
we get first here duty cycle that is express as
duty cycle =
...............1
duty cycle = 1.5 × 
and applied voltage will be
applied voltage = duty energy × voltage ...........2
applied voltage = 1.5 ×
× 2
applied voltage = 3 mV
so current will be
current =
................3
current = 
current = 20 µA
so net current will be
net current = 20 - 1.25
net current = 18.75 µA
so battery life will be
battery life = 
battery life = 80000 hours
battery life in year = 
battery life in year = 9.13 years
battery life in year = 9 years and 48 days
Answer:
The total tube surface area in m² required to achieve an air outlet temperature of 850 K is 192.3 m²
Explanation:
Here we have the heat Q given as follows;
Q = 15 × 1075 × (1100 -
) = 10 × 1075 × (850 - 300) = 5912500 J
∴ 1100 -
= 1100/3
= 733.33 K

Where
= Arithmetic mean temperature difference
= Inlet temperature of the gas = 1100 K
= Outlet temperature of the gas = 733.33 K
= Inlet temperature of the air = 300 K
= Outlet temperature of the air = 850 K
Hence, plugging in the values, we have;

Hence, from;
, we have
5912500 = 90 × A × 341.67

Hence, the total tube surface area in m² required to achieve an air outlet temperature of 850 K = 192.3 m².
Answer:
The time taken will be "1 hour 51 min". The further explanation is given below.
Explanation:
The given values are:
Number of required layers:
= 
= 
Diameter (d):
= 1.25 mm
Velocity (v):
= 40 mm/s
Now,
The area of one layer will be:
= 
= 
The area covered every \second will be:
= 
= 
= 
The time required to deposit one layer will be:
= 
= 
The time required for one layer will be:
= 
∴ Total times required for one layer will be:
= 
= 
So,
Number of layers = 152
Therefore,
Total time will be:
= 
= 
= 
Answer:

Explanation:
Given that
L= 50 m
Pressure drop = 130 KPa
For Copper tube is 3/4 standard type K drawn tube
Outside diameter=22.22 mm
Inside diameter=18.92 mm
Dynamic viscosity for kerosene

Pressure difference given as

Where
L is length of tube
μ is dynamic viscosity
Q is volume flow rate
d is inner diameter of tube
ΔP is pressure drop
Now by putting the values



So flow rate is 
The separation and purification process is used for DEVELOPING VACCINES. The development of vaccines must follow strict guidelines.
A vaccine is a biological preparation used to protect against harmful diseases (e.g., viruses) in a simple and safe manner.
Vaccine purification is a strict process consisting of clarification, concentration and chromatography in order to separate the extract that contains the active principle of the vaccine.
The techniques used for vaccine filtration include membrane filtration, depth filtration and centrifugation.
Learn more about vaccines here:
brainly.com/question/6683555