Teacher -> teach the topic
Learner -> learn the topic
Is that what you’re asking?
To solve this problem it is necessary to apply the concepts related to rate of thermal conduction

The letter Q represents the amount of heat transferred in a time t, k is the thermal conductivity constant for the material, A is the cross sectional area of the material transferring heat,
, T is the difference in temperature between one side of the material and the other, and d is the thickness of the material.
The change made between glass and air would be determined by:





There are two layers of Glass and one layer of Air so the total temperature would be given as,




Finally the rate of heat flow through this windows is given as,



Therefore the correct answer is D. 180W.
Answer:
correct is d) a ’= g / 2
Explanation:
For this exercise let's use the kinematics equations
On earth
v = v₀ - a t
a = (v₀- v) / T
On planet X
v = v₀ - a' t’
a ’= (v₀-v) / 2T
Let's substitute the land values in plot X
a’= a / 2
Now let's use Newton's second law
W = ma
m g = m a
a = g
We substitute
a ’= g / 2
So we see that on planet X the acceleration is half the acceleration of Earth's gravity
Answer :
(-3.7 meter/second) - (13.9 meter/second) = -17.6 meter/second
(21.4 second) - (72 second) = -50.6 second
Explanation :
(1) As we are given the expression :
(-3.7 meter/second) - (13.9 meter/second)
Now we have to evaluate this expression, we get:
⇒ -17.6 meter/second
(2) As we are given the expression :
(21.4 second) - (72 second)
Now we have to evaluate this expression, we get:
⇒ -50.6 second
The coefficient of friction must be 0.196
Explanation:
For a car moving on a circular track, the frictional force provides the centripetal force needed to keep the car in circular motion. Therefore, we can write:
where the term on the left is the frictional force acting between the tires of the car and the road, while the term on the right is the centripetal force. The various terms are:
is the coefficient of friction between the tires and the road
m is the mass of the car
is the acceleration of gravity
v is the speed of the car
r is the radius of the curve
In this problem,
r = 750 m is the radius
is the speed
And solving for
, we find the coefficient of friction required to keep the car in circular motion:

Learn more about circular motion:
brainly.com/question/2562955
brainly.com/question/6372960
#LearnwithBrainly