We first determine the vertex by using the formula,<span>-b/2a = vertex, in order to get the values for the t-coordinate. That is why we got
</span>
v_y=26.5 sin(53)=21.163v_x=26.5 cos(53)=15.948
then
let x=0since you are going to land on a 3m tally=-.5(9.8)t^2+ 21.163*t
y=0=-4.9t+21.163t=4.31
vx*4.31= total distance travelled=68.88m
Then for the first wheel, you have 15.948m=vxdetermine the time when he reaches 23 meters, that is
23/15.948=1.44218 sec
substitute t with1.44218 sec, then determine the height.
h(1.44218)=20.329
determine vertex by using a graphing calculatort=2.1594s h=22.85m
using the time value of the vertex, determine horizontal distance travelled
34.438m away from cannon
When a car travelling at an initial velocity of 10 m/s applies the brakes and bring ... accelerates from rest for a time of 8 seconds with an acceleration of 3.2m/s^2?
Answer:
frequency of the sound = f = 1,030.3 Hz
phase difference = Φ = 229.09°
Explanation:
Step 1: Given data:
Xini = 0.540m
Xfin = 0.870m
v = 340m/s
Step 2: frequency of the sound (f)
f = v / λ
λ = Xfin - Xini = 0.870 - 0.540 = 0.33
f = 340 / 0.33
f = 1,030.3 Hz
Step 3: phase difference
phase difference = Φ
Φ = (2π/λ)*(Xini - λ) = (2π/0.33)* (0.540-0.33) = 19.04*0.21 = 3.9984
Φ = 3.9984 rad * (360°/2π rad)
Φ = 229.09°
Hope this helps!
Answer:
a

b

c
Explanation:
From the question we are told that
The angle of incidence is 
The refractive index of water is 
Generally Snell's law is mathematically represented as

Here
is the refractive index of air with value 
is the angle of refraction
So
![\theta _2 = sin^{-1}[\frac{n_1 * sin(\theta _1)}{n_2} ]](https://tex.z-dn.net/?f=%5Ctheta%20_2%20%20%3D%20%20sin%5E%7B-1%7D%5B%5Cfrac%7Bn_1%20%2A%20sin%28%5Ctheta%20_1%29%7D%7Bn_2%7D%20%5D)
=> ![\theta _2 = sin^{-1}[\frac{1.3 * sin(10)}{1} ]](https://tex.z-dn.net/?f=%5Ctheta%20_2%20%20%3D%20%20sin%5E%7B-1%7D%5B%5Cfrac%7B1.3%20%2A%20sin%2810%29%7D%7B1%7D%20%5D)
=> 
Given that the angle should not be greater than
then the angle of incidence will be
![\theta _1 = sin^{-1}[\frac{n_2 * sin(\theta _2)}{n_1} ]](https://tex.z-dn.net/?f=%5Ctheta%20_1%20%20%3D%20%20sin%5E%7B-1%7D%5B%5Cfrac%7Bn_2%20%2A%20sin%28%5Ctheta%20_2%29%7D%7Bn_1%7D%20%5D)
=> ![\theta _1 = sin^{-1}[\frac{1 * sin(45)}{1.3} ]](https://tex.z-dn.net/?f=%5Ctheta%20_1%20%20%3D%20%20sin%5E%7B-1%7D%5B%5Cfrac%7B1%20%2A%20sin%2845%29%7D%7B1.3%7D%20%5D)
=> 
Generally for critical angle is mathematically represented as
![\theta_c = sin^{-1}[\frac{n_2}{n_1} ]](https://tex.z-dn.net/?f=%5Ctheta_c%20%20%3D%20%20sin%5E%7B-1%7D%5B%5Cfrac%7Bn_2%7D%7Bn_1%7D%20%5D)
=>
=>